
Instructor: Roshan Oganiya

Email: roganiya@dstrat.com

Power BI L200 Data Modeling

Making sense of your data

We Love Data

• 20 years of experience in analytics & business intelligence.

• Based in the GTA & service clients worldwide.

• Award winning Microsoft Partner with 70+ Employees.

Our clients

Report Development Flow

Power Query

Data
Modeling

DAX

Visualizations

Every component is equally important to produce robust solution

(Prep data for Data
Model)

Close &
Apply

COURSE OBJECTIVES

By the end of this course, you will be able to:

• Understand basic concepts of Data Modeling

• Understand the consequences of data model design decisions

• Understand concepts of calculated columns and measures

Agenda

9:00 - 9:15 Initial remarks and Introduction to the course

Section A

9:15 - 10:15 Intro to Data Preparation

Section B

10:15 - 11:00 Data Model Schemas, Normalization, Calculated Columns and Measures

11:00 - 11:15 Break

11:15 - 11:45 Lab 1

Section C

11:45 - 12:15 Data Storage in Power BI

12:15 - 12:30 Best Practices, Q&A

* Times are approximate and will be fluid with the class.

Intro to Data Preparation

Section A

Why Prepare our data?

• Power BI is powerful enough to compile and analyze
data, but..

• If the data is not prepared properly, these
compilations will be slower and reduce the report’s
analytical efficiency

• Data needs to cater to the technology of the
compression engine being used by PBI to develop a
robust data model

What is a Data model?

The Technology behind Power BI

VertiPaq Engine

The VertiPaq Engine:

Columnar Database Engine - Columns & Segments

How many distinct products sold in 2017-Q1 , only Product and Date columns are used

Compresses data to distinct values (Encoding)

In-Memory mode for tabular architecture

Pro Tip – Have your Queries/Tables be as “Narrow” as possible

Columnar Database

First Name Last Name Sales

John Smith $10

Jane Doe $25

Hardy B $35

First Name Last Name Sales

John Smith $10

Jane Doe $25

Hardy B $35

each row separately each column separately

• Columnar databases are well suited for analytics

In-Memory Database

Data stored in RAM (in memory) when the file is open

Sales Fact 145.0 MB

Dimensions 7.0 MB

Int’l Sales 128.0 MB

Total Data 280.0 MB

Query Metadata 14 KB

Almost 21X
Compression!!

Data Model 13.0 MB

Entities

Dimension Table:

Contain descriptive information used to slice and dice data from Fact Tables (eg:
branch_name, branch_type)

Also holds Relationship/Key Fields used to connect the dimension to the fact table
(eg: branch_key)

Wider tables with small amount of rows

Fact Table:

Contain facts/details which are fields used as values in a visualization (eg: dollars_sold,
units_sold)

Also holds Relationship/Key fields used to connect the dimension to the fact table
(eg: time_key, item_key, branch_key, location_key)

Narrow tables with large amount of rows

• H

Golden Rule:
Avoid using a single table that includes everything (both facts and dimensions)

branch_key

Relationships
• Connections between a 2 tables (usually

fact & Dim tables) using columns from
each are called Relationships

• Once you have two tables connected, you
can work with the data in both as if they
were in a single table

• A Relationship is analogous to how an
Excel VLOOKUP function brings two tables
together

• Power BI automatically sets the Cardinality,
Cross Filter Direction and Active
relationship when you load queries onto
PBI.

Cardinality

One to One (1 : 1) relationship

- Takes place when you connect columns with the same, distinct values.

- For such a relationship, you can merge the two tables together in Power Query Editor and
disable loading the original to avoid redundancy

One to Many (1 : *) relationship

- The most common type of cardinality used

- Takes place when you connect a field with unique values to another table with the same field
but repeating values

Cardinality

Many to Many (* : *) relationship

- Takes place when there are multiple records of the same value in the joining field of the two
tables being joined.

- Considered to be a weak relationship; causes a lot of issues. Can be resolved by creating a
shared dimension and creating one to many relationships with the shared dimension.

- Avoid Many to Many relationships when possible as it is laborious to maintain

Cross Filter Direction
The direction of a relationship is called the cross-filter direction as it sets up the way a filter propagates
through your data

Uni -Directional Relationship

- Used when a dimension table to filters through fact table data as the filter direction moves
from the dimension to the fact table with the connecting field (ProductID)

Bi-Directional Relationship

‐ Allow you to pass filters in both directions

‐ This is different than Many to Many

‐ There is a significant performance penalty for Bi-Directional filtering

Data Model Schemas, Normalization, DAX Calculated
Columns and Measures

Section B

Phases in Building a Power BI Desktop File

Data Model Brings Facts and Dimensions Together

Data Models

Snowflake
Schema

Star Schema
Flat or

Denormalized

Flat or
Denormalized

Schema

• All attributes for model exist in a

single table

• Highly inefficient

• Model has extra copies of data >

slow performance

• Size of a flat table can blow up

quickly as data model becomes

complex

Star Schema

• Simple, easy to understand, fewer
joins

• Comprises of a single Fact table in
the middle branching outwards to
connect to various dimension tables

• Fact table is the “Many” side of the
(one to many) relationship

• Consumes more space than the
snowflake schema (not always a bad
thing as Power BI is powerful enough)

11 Many 1

Snowflake
Schema

• Dimension tables are Normalized in
Snowflake schema

• Dimensions “snowflake” off of other

Dimensions

• Dim or Fact tables can be the

“Many” side of the relationship

Facts Dims Dims Flake

Granularity &
Multiple Fact Tables

• Grain (granularity) measures the level of
detail in a table

Example:

One row per order or per Item

Daily or Monthly date grain

• If your facts have very different
granularities, split them into Multiple Fact
tables & connect them to shared
dimensions at the lowest common
granularity.

Sales (Daily by Product)

Budget (Monthly by Product Category & Product Segment

Normalization

• Process of organizing database to make it more flexible by eliminating redundancy and inconsistent
dependency

• Deals with creating separate tables for values that can apply to multiple records (dimension tables) and
relating these tables with some sort of a foreign key.

- This involves studying the dataset to see what fields can be grouped together to form dimension tables that
could be used by other fact tables

• Next, try to figure out how
the new dimension tables could
be related to the fact table with
the help of a simple or
compound key

DAX Foundations

Calculated Column

Calculated Columns and Measures are both written in the DAX Language

A Calculated Column is evaluated as a new column in the table in which it resides and will not change value until the
underlying data is refreshed.

Measures are calculations which do not have a result until they are used in a visualization.
They may use sums, averages, minimum or maximum values, counts, or more advanced calculations; and they change
value in response to your interaction with your reports.

What is a Calculated Column?

Calculated Column

Best Practices – Calculated Columns

What is a Measure?

[Total Sales]=SUM(Sales[Sales Amount])

Calculated Column vs. Measure: When to Use What

Rule of Thumb

Calculated Column – Use in Page, Report & Visual Filters as well as Slicers, Rows and Columns

Measures - Use in Values section

Slicer

Rows

Columns

Values

Key takeaways to design a good Power BI Desktop data model

Designing good data models

• RAM is precious !!!!!

• If a fact table contains an ID field which is unique for each record, remove it unless needed as a connector key

• Ex. Transaction ID

• Sort columns before bringing them into a Power BI data model

• The DateTime data type is usually not needed, unless you are specifically using the Time component

➢ If you really need Time, try splitting Date & Time into

1. What is a data model in the context of Power BI?

2. What are some advantages of a star schema over a flat or denormalized model?

3. How might you improve the performance of a Power BI model?

Knowledge Check

• A data model is a collection of tables and relationships

• Dimension tables save space by reducing the amount of data that needs to be repeated over and

over in every row

• Relationships between tables can be leveraged for more complex measures

• Try using a star schema instead of a flat or denormalized model

• Remove unnecessary columns

• Set appropriate data types

Break

Lab 1

Data Storage in Power BI

Section C

Data Mode Types in Power BI

How can I tell what Data Model Type I have?

Connection: Live Connect

Choosing storage mode: LiveConnect

Connection: DirectQuery to Relational Source

Import Mode

- Most widely used connection and the default type when

connecting to most sources.

- The connection will ingest/pull all the data from the source and

make it a part of the PBI

Choosing storage mode: Import vs DirectQuery

Best Practices

Data Modeling

An inefficient model can completely slow down a report, even with very small data

volumes

GOALS:

• Make the model as small as possible

• Schema supports the analysis

• Relationships are built purposefully and thoughtfully

Move calculations to the source

Scenario
• Many DAX calculated columns with high cardinality

Why is it undesired?
• Calculated columns don’t compress as well as physical columns

Proposed Solution
• Perform calc in Power Query, ideally push down

Remove unused tables and columns

Scenario
• Model contains tables/columns that are not used for reporting/analysis or

calculations

Why is it undesired?
• Increases model size
• Increases time to load into memory
• Increases refresh time
• May affect usability

Avoid high precision/cardinality columns

Scenario
• Model contains columns at a higher precision than needed for analysis e.g. datetime

in milliseconds, weight to 6 decimal places
• Model contains columns that are highly unique

Why is it undesired?
• Less compression with high precision/cardinality
• Increases time to load into memory
• Increases refresh time

Proposed Solution
• Remove if not needed
• Reduce precision
• Split datetime into date and time

Use integers instead of strings

Why is it undesired?
• Strings use dictionary encoding, integers use run length encoding which is more

efficient

Proposed Solution
• Check data types and set to integer if known to be numerical

Be careful with bi-directional relationships

Scenario
• Most relationships in the model are set to bi-

directional

Why is it undesired?
• Applying filters/slicers traverses many

relationships and can be slower
• Some filter chains unlikely to add business

value

Proposed Solution
• Only use bi-di where the business scenario

requires it

Set Default Summarization

Scenario
• Numeric columns in model that are purely

informational (e.g. Account ID)
• Default summarization is Sum

Why is it undesired?
• Power BI will try to sum the number when

dropped into visuals.
• Detailed tables/matrixes can be slower

Proposed Solution
• Set the default summarization to None

Q&A

