Introduction to Neural Networks and Deep Learning

Introduction to the Convolutional Network

Andres Mendez-Vazquez

March 28, 2021

Outline

(1) Introduction

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- Strides
- Normalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
- Backpropagation
- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Outline

(1) Introduction

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

The Long Path [1]

Beyond Complex Architectures and The Attention Revolution

A Small History of a
 Revolution

Outline

(1) Introduction

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2. Convolutional Networks

- History
- Local Connectivity

Sharing Parameters
3 Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch NormalizationFinally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Digital Images as pixels in a digitized matrix [2]

Further [2]

Pixel values typically represent

- Gray levels, colors, heights, opacities etc

Further [2]

Pixel values typically represent

- Gray levels, colors, heights, opacities etc

Something Notable

- Remember digitization implies that a digital image is an approximation of a real scene

Images

Common image formats include

- On sample/pixel per point (B\&W or Grayscale)
- Three samples/pixel per point (Red, Green, and Blue)
- Four samples/pixel per point (Red, Green, Blue, and "Alpha")

Therefore, we have the following process

Example

Edge Detection

Mid Level Process

Input	Processes	Output
Image	Object Recognition Segmentation	Attributes

Example

Object Recognition

Therefore

It would be nice to automatize all these processes

- We would solve a lot of headaches when setting up such process

Therefore

It would be nice to automatize all these processes

- We would solve a lot of headaches when setting up such process

Why not to use the data sets

- By using a Neural Networks that replicates the process.

Outline

(1) Introduction

- The Long Path

The Problem of Image Processing

- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer

O Sub-sampling and Pooling

- StridesNormalization Layer AKA Batch NormalizationFinally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Multilayer Neural Network Classification

We have the following classification [3]

| Structure | Types of
 Decision Regions | Exclusive-OR
 Problem | Classes with
 Meshed regions Region Shape\$ |
| :---: | :---: | :---: | :---: | :---: |
| Single-Layer | Half Plane
 Bounded By
 Hyper plane | A | |

Outline

(1) Introduction

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters

3) Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Drawbacks of previous neural networks

The number of trainable parameters becomes extremely large

Large N

Drawbacks of previous neural networks

In addition, little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of previous neural networks

In addition，little or no invariance to shifting，scaling，and other forms of distortion

$$
\begin{aligned}
& \text { Large } N \\
& N \times N
\end{aligned}
$$

Shift to the Left
 P阤 ——
 サ｜ P｜ － M｜

 ค 4 A 1 II $1+1+5$ ヤ｜ PH A A P \square

$\rightarrow \dot{1}$ ヤ Ш PR～ \rightarrow —— P

Drawbacks of previous neural networks

The topology of the input data is completely ignored

For Example

We have

- Black and white patterns: $2^{32 \times 32}=2^{1024}$
- Gray scale patterns: $256^{32 \times 32}=256^{1024}$

$32 * 32$ input image

For Example

If we have an element that the network has never seen

Possible Solution

We can minimize this drawbacks by getting

- Fully connected network of sufficient size can produce outputs that are invariant with respect to such variations.

Possible Solution

We can minimize this drawbacks by getting

- Fully connected network of sufficient size can produce outputs that are invariant with respect to such variations.

Problem!!!

- Training time
- Network size
- Free parameters

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

(2) Convolutional Networks
 - History

- Local Connectivity
- Sharing Parameters

3 Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Hubel/Wiesel Architecture

Something Notable [4]

- D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

Hubel/Wiesel Architecture

Something Notable [4]

- D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

They commented

- The visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Something Like

We have

Feature Hierarchy

History

Convolutional Neural Networks (CNN) were invented by [5]

In 1989, Yann LeCun and Yoshua Bengio introduced the concept of Convolutional Neural networks.

About CNN's

Something Notable

CNN's Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

About CNN's

Something Notable

CNN's Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

In addition

They designed a network structure that implicitly extracts relevant features.

About CNN's

Something Notable

CNN's Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

In addition

They designed a network structure that implicitly extracts relevant features.

Properties

Convolutional Neural Networks are a special kind of multi-layer neural networks.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.
- They can recognize patterns with extreme variability.

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

(2) Convolutional Networks

- History
- Local Connectivity

Sharing Parameters
(3) Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Local Connectivity

We have the following idea [6]

- Instead of using a full connectivity...

Local Connectivity

We have the following idea [6]

- Instead of using a full connectivity...

Input Image

We would have something like this

$$
\begin{equation*}
y_{i}=f\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \tag{1}
\end{equation*}
$$

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.
- It is connected to all channels:

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.
- It is connected to all channels:

Example

For gray scale, we get something like this

Example

For gray scale, we get something like this

Then, our formula changes

$$
\begin{equation*}
y_{i}=f\left(\sum_{i \in L_{p}} w_{i} x_{i}\right) \tag{2}
\end{equation*}
$$

Example

In the case of the 3 channels

Example

In the case of the 3 channels

Thus

$$
\begin{equation*}
y_{i}=f\left(\sum_{i \in L_{p}, c} w_{i} x_{i}^{c}\right) \tag{3}
\end{equation*}
$$

Solving the following problems...

First

- Fully connected hidden layer would have an unmanageable number of parameters

Solving the following problems...

First

- Fully connected hidden layer would have an unmanageable number of parameters

Second

- Computing the linear activation of the hidden units would have been quite expensive

How this looks in the image...

We have

Receptive Field

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

(2) Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Parameter Sharing

Second Idea

Share matrix of parameters across certain units.

Parameter Sharing

Second Idea

Share matrix of parameters across certain units.
These units are organized into

- The same feature "map"
- Where the units share same parameters (For example, the same mask)

Example

We have something like this

Feature Map 1
Feature Map 2
Feature Map 3

Example

We have something like this

Feature Map 1
Feature Map 2
Feature Map 3

Now, in our notation

We have a collection of matrices representing this connectivity

- $W_{i j}$ is the connection matrix the i th input channel with the j th feature map.

Now, in our notation

We have a collection of matrices representing this connectivity

- $W_{i j}$ is the connection matrix the i th input channel with the j th feature map.
- In each cell of these matrices is the weight to be multiplied with the local input to the local neuron.

An now why the name of convolution

Yes!!! The definition is coming now.

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2 Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch NormalizationFinally, The Fully Connected Layer
4 An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Digital Images

In computer vision [2, 7]
We usually operate on digital (discrete) images:

Digital Images

In computer vision [2, 7]

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid.

Digital Images

In computer vision [2, 7]

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid.
- Quantize each sample (round to nearest integer).

Digital Images

In computer vision [2, 7]

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid.
- Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values, $I:[a, b] \times[c, d] \rightarrow[0 . .255]$

$$
i \downarrow\left[\begin{array}{cccccccc}
79 & 5 & 6 & 90 & 12 & 34 & 2 & 1 \\
8 & 90 & 12 & 34 & 26 & 78 & 34 & 5 \\
8 & 1 & 3 & 90 & 12 & 34 & 11 & 61 \\
77 & 90 & 12 & 34 & 200 & 2 & 9 & 45 \\
1 & 3 & 90 & 12 & 20 & 1 & 6 & 23
\end{array}\right]
$$

Many times we want to eliminate noise in a image

For example a moving average

This is defined as

This last moving average can be seen as

$$
\begin{equation*}
(I * k)(i)=\sum_{j=-n}^{n} I(i-j) \times K(j)=\frac{1}{N} \sum_{j=m}^{-m} I(i-j) \tag{4}
\end{equation*}
$$

With $I(j)$ representing the value of the pixel at position j,

$$
K(j)= \begin{cases}\frac{1}{N} & \text { if } j \in\{-m,-m+1, \ldots, 1,0,1, \ldots, m-1, m\} \\ 0 & \text { else }\end{cases}
$$

with $0<m<n$.

This can be generalized into the 2D images

Left I and Right $I * K$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This can be generalized into the 2D images

Left I and Right $I * K$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This can be generalized into the 2D images

Left I and Right $I * K$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20						

This can be generalized into the 2D images

Left I and Right $I * K$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10		
10	10	10	0	0	0	0	0		

Moving average in 2D

Basically in 2D

- We can define different types of filter using the idea of weighted average

$$
\begin{equation*}
(I * K)(i, j)=\sum_{s=m}^{-m} \sum_{l=-m}^{m} I(i-s, j-l) \times K(s, l) \tag{5}
\end{equation*}
$$

Moving average in 2D

Basically in 2D

- We can define different types of filter using the idea of weighted average

$$
\begin{equation*}
(I * K)(i, j)=\sum_{s=m}^{-m} \sum_{l=-m}^{m} I(i-s, j-l) \times K(s, l) \tag{5}
\end{equation*}
$$

For example, the Box Filter

$$
K=\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \tag{6}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \text { "The Box Filter" }
$$

Another Example

The Gaussian Filter

$$
K=\left[\begin{array}{lllll}
0 & 1 & 2 & 1 & 0 \\
1 & 3 & 4 & 3 & 1 \\
2 & 5 & 9 & 5 & 2 \\
1 & 3 & 5 & 3 & 1 \\
0 & 1 & 2 & 1 & 0
\end{array}\right]
$$

Another Example

The Gaussian Filter

$$
K=\left[\begin{array}{lllll}
0 & 1 & 2 & 1 & 0 \\
1 & 3 & 4 & 3 & 1 \\
2 & 5 & 9 & 5 & 2 \\
1 & 3 & 5 & 3 & 1 \\
0 & 1 & 2 & 1 & 0
\end{array}\right]
$$

Thus, we can define the concept of convolution

- Yes, using the previous ideas

Convolution

Definition

- Let $I:[a, b] \times[c, d] \rightarrow[0 . .255]$ be the image and $K:[e, f] \times[h, i] \rightarrow \mathbb{R}$ be the kernel. The output of Convolving I with K, denoted $I * K$ is

$$
(I * K)[x, y]=\sum_{s=-n}^{n} \sum_{l=-n}^{n} I(x-s, y-l) \times K(s, l)
$$

Now, why not to expand this idea

Imagine that a three channel image is splitted into a three feature map
$K\left(W, H, C_{\text {in }}, C_{\text {out }}\right)$
$W=$ Width
$H=$ Height
$C_{i n}=$ channels input
$C_{\text {out }}=$ channel output

Mathematically, we have the following

Map i

$$
(I * k)[x, y, o]=\sum_{c=1}^{3} \sum_{l=-n}^{n} \sum_{s=-n}^{n} I(x-l, y-s, c) \times k(l, s, c, o)
$$

Mathematically, we have the following

Map i

$$
(I * k)[x, y, o]=\sum_{c=1}^{3} \sum_{l=-n}^{n} \sum_{s=-n}^{n} I(x-l, y-s, c) \times k(l, s, c, o)
$$

Therefore

- The convolution works as a
- Filter
- Encoder
- Decoder
- etc

For Example，Encoder

We have the following situation

Notation

We have the following

- $Y_{j}^{(l)}$ is a matrix representing the l layer and $j^{\text {th }}$ feature map.
- $K_{i j}^{(l)}$ is the kernel filter with $i^{\text {th }}$ kernel for layer $j^{t h}$.

Notation

We have the following

- $Y_{j}^{(l)}$ is a matrix representing the l layer and $j^{\text {th }}$ feature map.
- $K_{i j}^{(l)}$ is the kernel filter with $i^{\text {th }}$ kernel for layer $j^{t h}$.

Therefore

- We can see the Convolutional as a fusion of information from different feature maps.

$$
\sum_{j=1}^{m_{1}^{(l-1)}} Y_{j}^{(l-1)} * K_{i j}^{(l)}
$$

Thus, we have

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
Y_{i}^{(l)}(x, y)=B_{i}^{(l)}(x, y)+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{s=-k s}^{k s} \sum_{l=-k s}^{k s} Y_{j}^{(l-1)}(x-s, y-l) K_{i j}^{(l)}(x, y)
$$

Thus, we have

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
Y_{i}^{(l)}(x, y)=B_{i}^{(l)}(x, y)+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{s=-k s}^{k s} \sum_{l=-k s}^{k s} Y_{j}^{(l-1)}(x-s, y-l) K_{i j}^{(l)}(x, y)
$$

Where

- $Y_{i}^{(l)}$ is the $i^{t h}$ feature map in layer l.

Thus, we have

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
Y_{i}^{(l)}(x, y)=B_{i}^{(l)}(x, y)+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{s=-k s}^{k s} \sum_{l=-k s}^{k s} Y_{j}^{(l-1)}(x-s, y-l) K_{i j}^{(l)}(x, y)
$$

Where

- $Y_{i}^{(l)}$ is the $i^{t h}$ feature map in layer l.
- $B_{i}^{(l)}$ is the bias matrix for output j.

Thus, we have

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
Y_{i}^{(l)}(x, y)=B_{i}^{(l)}(x, y)+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{s=-k s}^{k s} \sum_{l=-k s}^{k s} Y_{j}^{(l-1)}(x-s, y-l) K_{i j}^{(l)}(x, y)
$$

Where

- $Y_{i}^{(l)}$ is the $i^{\text {th }}$ feature map in layer l.
- $B_{i}^{(l)}$ is the bias matrix for output j.
- $K_{i j}^{(l)}$ is the filter of size $\left[2 h_{1}^{(l)}+1\right] \times\left[2 h_{2}^{(l)}+1\right]$.

Thus, we have

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
Y_{i}^{(l)}(x, y)=B_{i}^{(l)}(x, y)+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{s=-k s}^{k s} \sum_{l=-k s}^{k s} Y_{j}^{(l-1)}(x-s, y-l) K_{i j}^{(l)}(x, y)
$$

Where

- $Y_{i}^{(l)}$ is the $i^{\text {th }}$ feature map in layer l.
- $B_{i}^{(l)}$ is the bias matrix for output j.
- $K_{i j}^{(l)}$ is the filter of size $\left[2 h_{1}^{(l)}+1\right] \times\left[2 h_{2}^{(l)}+1\right]$.

Thus

- The input of layer l comprises $m_{1}^{(l-1)}$ feature maps from the previous layer, each of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$

Therefore

Thew output of layer l

- It consists $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l)} \times m_{3}^{(l)}$

Therefore

Thew output of layer l

- It consists $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l)} \times m_{3}^{(l)}$

Something Notable

- $m_{2}^{(l)}$ and $m_{3}^{(l)}$ are influenced by border effects.
- Therefore, the output feature maps when the Convolutional sum is defined properly have size

$$
\begin{aligned}
& m_{2}^{(l)}=m_{2}^{(l-1)}-2 h_{1}^{(l)} \\
& m_{3}^{(l)}=m_{3}^{(l-1)}-2 h_{2}^{(l)}
\end{aligned}
$$

Why? The Border

Example

Convolutional Maps

h_{2}

Special Case

When $l=1$
The input is a single image I consisting of one or more channels.

Thus

We have

Each feature map $Y_{i}^{(l)}$ in layer l consists of $m_{1}^{(l)} \cdot m_{2}^{(l)}$ units arranged in a two dimensional array.

Thus

We have

Each feature map $Y_{i}^{(l)}$ in layer l consists of $m_{1}^{(l)} \cdot m_{2}^{(l)}$ units arranged in a two dimensional array.

Thus, the unit at position (x, y) computes

$$
\begin{aligned}
\left(Y_{i}^{(l)}\right)_{x, y} & =\left(B_{i}^{(l)}\right)_{x, y}+\sum_{j=1}^{m_{1}^{(l-1)}}\left(K_{i j}^{(l)} * Y_{j}^{(l-1)}\right)_{x, y} \\
& =\left(B_{i}^{(l)}\right)_{x, y}+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{i j}^{(l)}\right)_{k, t}\left(Y_{j}^{(l-1)}\right)_{x-k, x-t}
\end{aligned}
$$

Here, an interesting case

Only a Historical Note

- The foundations for deconvolution came from Norbert Wiener of the Massachusetts Institute of Technology in his book "Extrapolation, Interpolation, and Smoothing of Stationary Time Series" (1949)

Here, an interesting case

Only a Historical Note

- The foundations for deconvolution came from Norbert Wiener of the Massachusetts Institute of Technology in his book "Extrapolation, Interpolation, and Smoothing of Stationary Time Series" (1949)

Basically, it tries to solve the following equation with $Y^{(l)}$ unknown layer that we want to recover

$$
Y_{i}^{(l)} * K_{i j}^{(l)}=Y_{j}^{(l-1)}
$$

$\ln [8]$

They proposed a sparcity idea to start the implementation as

$$
C\left(Y^{(l-1)}\right)=\sum_{i=1}^{m_{1}^{(l-1)}}\left\|\sum_{j=1}^{m_{1}^{(l)}} Y_{j}^{(l)} * K_{i j}^{(l)}-Y_{i}^{(l-1)}\right\|_{2}^{2}+\sum_{j=1}^{m_{1}^{(l)}}\left|Y_{j}^{(l)}\right|^{p}
$$

- Typically, $p=1$, although other values are possible.

In [8]

They proposed a sparcity idea to start the implementation as

$$
C\left(Y^{(l-1)}\right)=\sum_{i=1}^{m_{1}^{(l-1)}}\left\|\sum_{j=1}^{m_{1}^{(l)}} Y_{j}^{(l)} * K_{i j}^{(l)}-Y_{i}^{(l-1)}\right\|_{2}^{2}+\sum_{j=1}^{m_{1}^{(l)}}\left|Y_{j}^{(l)}\right|^{p}
$$

- Typically, $p=1$, although other values are possible.

They look for the arguments to minimize a cost of function over a set of images $y=\left\{y^{1}, \ldots, y^{I}\right\}$

$$
\arg \min _{Y_{j}^{(l)} * K_{i j}^{(l)}} C(y)
$$

Here

Then, we can generalize such cost function for that total set of images (Minbatch)

$$
C_{l}(y)=\frac{\lambda}{2} \sum_{k=1}^{I} \sum_{i=1}^{m_{1}^{(l-1)}}\left\|\sum_{j=1}^{m_{1}^{(l)}} g_{i j}^{(l)}\left(Y_{j}^{(l, k)} * K_{i j}^{(l)}\right)-Y_{i}^{(l-1, k)}\right\|_{2}^{2}+\sum_{j=1}^{m_{1}^{(l)}}\left|Y_{j}^{(l, k)}\right|^{p}
$$

Here

Then, we can generalize such cost function for that total set of images (Minbatch)

$$
C_{l}(y)=\frac{\lambda}{2} \sum_{k=1}^{I} \sum_{i=1}^{m_{1}^{(l-1)}}\left\|\sum_{j=1}^{m_{1}^{(l)}} g_{i j}^{(l)}\left(Y_{j}^{(l, k)} * K_{i j}^{(l)}\right)-Y_{i}^{(l-1, k)}\right\|_{2}^{2}+\sum_{j=1}^{m_{1}^{(l)}}\left|Y_{j}^{(l, k)}\right|^{p}
$$

Here, we have

- $Y_{i}^{(l-1, k)}$ are the feature maps from the previous layer
- $g_{i j}^{(l)}$ is a fixed binary matrix that determines the connectivity between feature maps at different layers
- If $Y_{j}^{(l, k)}$ is connected to certain $Y_{i}^{(l-1, k)}$ elments

This can be sen as

We have the following layer

They noticed some drawbacks

Using the following optimizations

- Direct Gradient Descent
- Iterative Reweighted Least Squares
- Stochastic Gradient Descent

They noticed some drawbacks

Using the following optimizations

- Direct Gradient Descent
- Iterative Reweighted Least Squares
- Stochastic Gradient Descent

All of they presented problems!!!

- They solved it using a new cost function

We have that

An interesting use of an auxiliar variable/layer $X_{i}^{(l, k)}$

$$
\begin{aligned}
C_{l}(y)= & \frac{\lambda}{2} \sum_{k=1}^{I} \sum_{i=1}^{m_{1}^{(l-1)}}\left\|\sum_{j=1}^{m_{1}^{(l)}} g_{i j}^{(l)}\left(Y_{j}^{(l, k)} * K_{i j}^{(l)}\right)-Y_{i}^{(l-1, k)}\right\|_{2}^{2}+\ldots \\
& \frac{\beta}{2} \sum_{k=1}^{I} \sum_{j=1}^{m_{1}^{(l)}}\left\|Y_{j}^{(l, k)}-X_{i}^{(l, k)}\right\|_{2}^{2}+\sum_{k=1}^{I} \sum_{j=1}^{m_{1}^{(l)}}\left|Y_{j}^{(l, k)}\right|^{p}
\end{aligned}
$$

We have that

An interesting use of an auxiliar variable/layer $X_{i}^{(l, k)}$

$$
\begin{aligned}
C_{l}(y)= & \frac{\lambda}{2} \sum_{k=1}^{I} \sum_{i=1}^{m_{1}^{(l-1)}}\left\|\sum_{j=1}^{m_{1}^{(l)}} g_{i j}^{(l)}\left(Y_{j}^{(l, k)} * K_{i j}^{(l)}\right)-Y_{i}^{(l-1, k)}\right\|_{2}^{2}+\ldots \\
& \frac{\beta}{2} \sum_{k=1}^{I} \sum_{j=1}^{m_{1}^{(l)}}\left\|Y_{j}^{(l, k)}-X_{i}^{(l, k)}\right\|_{2}^{2}+\sum_{k=1}^{I} \sum_{j=1}^{m_{1}^{(l)}}\left|Y_{j}^{(l, k)}\right|^{p}
\end{aligned}
$$

This can be solved using

- Alternating minimization...

This is based on

Fixing the values of $Y_{j}^{(l, k)}$ and $X_{i}^{(l, k)}$

- They call these two stages the Y and X sub-problems...

This is based on

Fixing the values of $Y_{j}^{(l, k)}$ and $X_{i}^{(l, k)}$

- They call these two stages the Y and X sub-problems...

Therefore, they noticed

- These terms introduce the sparsity constraint and gives numerical stability [9, 10]

Y sub-problem

Taking the derivative of $Y_{j}^{(l, k)}$

$$
\frac{\partial C_{l}(y)}{\partial Y_{j}^{(l, k)}}=\lambda \sum_{i=1}^{m_{1}^{(l-1)}} F_{i j}^{(l) T}\left[\sum_{t=1}^{m_{1}^{(l)}} F_{t j}^{(l)} Y_{j}^{(l, k)}-Y_{j}^{(l-1, k)}\right]+\beta\left[Y_{j}^{(l, k)}-X_{j}^{(l, k)}\right]=0
$$

Y sub-problem

Taking the derivative of $Y_{j}^{(l, k)}$
$\frac{\partial C_{l}(y)}{\partial Y_{j}^{(l, k)}}=\lambda \sum_{i=1}^{m_{1}^{(l-1)}} F_{i j}^{(l) T}\left[\sum_{t=1}^{m_{1}^{(l)}} F_{t j}^{(l)} Y_{j}^{(l, k)}-Y_{j}^{(l-1, k)}\right]+\beta\left[Y_{j}^{(l, k)}-X_{j}^{(l, k)}\right]=0$

Where

$$
F_{i j}^{(l)}= \begin{cases}\mathrm{It} \text { is a sparse convolution matrix } & \text { if } g_{i j}^{(l)}=1 \\ 0 & \text { if } g_{i j}^{(l)}=0\end{cases}
$$

Therefore

$F_{i j}^{(l)}$ as a sparse convolution matrix

- Equivalent to convolve with $K_{i j}^{(l)}$

Therefore

$F_{i j}^{(l)}$ as a sparse convolution matrix

- Equivalent to convolve with $K_{i j}^{(l)}$

Actually if you fix i, you finish with a linear system $A x=0$

- Please take a look at the paper... it is interesting
- Actually this seems to be the implementation at the Tensorflow framework

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification

Drawbacks

- Possible Solution

2) Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters

(3) Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

As in a Multilayer Perceptron

We use a non-linearity

- However, there is a drawback when using Back-Propagation under a sigmoid function

$$
s(x)=\frac{1}{1+e^{-x}}
$$

As in a Multilayer Perceptron

We use a non-linearity

- However, there is a drawback when using Back-Propagation under a sigmoid function

$$
s(x)=\frac{1}{1+e^{-x}}
$$

Because if we imagine a Convolutional Network as a series of layer functions f_{i}

$$
y(A)=f_{t} \circ f_{t-1} \circ \cdots \circ f_{2} \circ f_{1}(A)
$$

With f_{t} is the last layer.

As in a Multilayer Perceptron

We use a non-linearity

- However, there is a drawback when using Back-Propagation under a sigmoid function

$$
s(x)=\frac{1}{1+e^{-x}}
$$

Because if we imagine a Convolutional Network as a series of layer functions f_{i}

$$
y(A)=f_{t} \circ f_{t-1} \circ \cdots \circ f_{2} \circ f_{1}(A)
$$

With f_{t} is the last layer.
Therefore, we finish with a sequence of derivatives

$$
\frac{\partial y(A)}{\partial w_{1 i}}=\frac{\partial f_{t}\left(f_{t-1}\right)}{\partial f_{t-1}} \cdot \frac{\partial f_{t-1}\left(f_{t-2}\right)}{\partial f_{t-2}} \cdots \cdots \frac{\partial f_{2}\left(f_{1}\right)}{\partial f_{2}} \cdot \frac{\partial f_{1}(A)}{\partial w_{1 i}}
$$

Therefore

Given the commutativity of the product

- You could put together the derivative of the sigmoid's

$$
f(x)=\frac{d s(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
$$

Therefore

Given the commutativity of the product

- You could put together the derivative of the sigmoid's

$$
f(x)=\frac{d s(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
$$

Therefore, deriving again

$$
\frac{d f(x)}{d x}=-\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}+\frac{2\left(e^{-x}\right)^{2}}{\left(1+e^{-x}\right)^{3}}
$$

Therefore

Given the commutativity of the product

- You could put together the derivative of the sigmoid's

$$
f(x)=\frac{d s(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
$$

Therefore, deriving again

$$
\frac{d f(x)}{d x}=-\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}+\frac{2\left(e^{-x}\right)^{2}}{\left(1+e^{-x}\right)^{3}}
$$

After making $\frac{d f(x)}{d x}=0$

- We have the maximum is at $x=0$

Therefore

The maximum for the derivative of the sigmoid

- $f(0)=0.25$

Therefore

The maximum for the derivative of the sigmoid

- $f(0)=0.25$

Therefore, Given a Deep Convolutional Network

- We could finish with

$$
\lim _{k \rightarrow \infty}\left(\frac{d s(x)}{d x}\right)^{k}=\lim _{k \rightarrow \infty}(0.25)^{k} \rightarrow 0
$$

Therefore

The maximum for the derivative of the sigmoid

- $f(0)=0.25$

Therefore, Given a Deep Convolutional Network

- We could finish with

$$
\lim _{k \rightarrow \infty}\left(\frac{d s(x)}{d x}\right)^{k}=\lim _{k \rightarrow \infty}(0.25)^{k} \rightarrow 0
$$

A vanishing derivative

- Making quite difficult to do train a deeper network using this activation function

Thus

The need to introduce a new function

$$
f(x)=x^{+}=\max (0, x)
$$

Thus

The need to introduce a new function

$$
f(x)=x^{+}=\max (0, x)
$$

It is called ReLu or Rectifier

With a smooth approximation (Softplus function)

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

Therefore, we have

When $k=1$

Increase k

When $k=10^{4}$

Non-Linearity Layer

If layer I is a non-linearity layer

Its input is given by $m_{1}^{(l)}$ feature maps.

Non-Linearity Layer

If layer I is a non-linearity layer

Its input is given by $m_{1}^{(l)}$ feature maps.

What about the output

Its output comprises again $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps

Non-Linearity Layer

If layer I is a non-linearity layer

Its input is given by $m_{1}^{(l)}$ feature maps.

What about the output

Its output comprises again $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps

Each of them of size

$$
\begin{equation*}
m_{2}^{(l-1)} \times m_{3}^{(l-1)} \tag{7}
\end{equation*}
$$

With $m_{2}^{(l)}=m_{2}^{(l-1)}$ and $m_{3}^{(l)}=m_{3}^{(l-1)}$.

Thus

With the final output

$$
\begin{equation*}
Y_{i}^{(l)}=f\left(Y_{i}^{(l-1)}\right) \tag{8}
\end{equation*}
$$

Thus

With the final output

$$
\begin{equation*}
Y_{i}^{(l)}=f\left(Y_{i}^{(l-1)}\right) \tag{8}
\end{equation*}
$$

Where

f is the activation function used in layer l and operates point wise.

Thus

With the final output

$$
\begin{equation*}
Y_{i}^{(l)}=f\left(Y_{i}^{(l-1)}\right) \tag{8}
\end{equation*}
$$

Where

f is the activation function used in layer l and operates point wise.
You can also add a gain to compensate

$$
\begin{equation*}
Y_{i}^{(l)}=g_{i} f\left(Y_{i}^{(l-1)}\right) \tag{9}
\end{equation*}
$$

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification

Drawbacks

- Possible Solution

2. Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer

- Rectification Layer

- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
-

BackpropagationDeriving $w_{r, s, k}$

- Deriving the Kernel Filters

Rectification Layer, $R_{a b s}$

Now a rectification layer

Then its input comprises $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.

Rectification Layer, $R_{a b s}$

Now a rectification layer

Then its input comprises $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.
Then, the absolute value for each component of the feature maps is computed

$$
\begin{equation*}
Y_{i}^{(l)}=\left|Y_{i}^{(l)}\right| \tag{10}
\end{equation*}
$$

Rectification Layer, $R_{a b s}$

Now a rectification layer

Then its input comprises $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.

Then, the absolute value for each component of the feature maps is computed

$$
\begin{equation*}
Y_{i}^{(l)}=\left|Y_{i}^{(l)}\right| \tag{10}
\end{equation*}
$$

Where the absolute value

It is computed point wise such that the output consists of $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

Thus

We have that

Experiments show that rectification plays a central role in achieving good performance.

Thus

We have that

Experiments show that rectification plays a central role in achieving good performance.

You can find this in

K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Computer Vision, International Conference on, pages 2146-2153, 2009.

Thus

We have that

Experiments show that rectification plays a central role in achieving good performance.

You can find this in

K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Computer Vision, International Conference on, pages 2146-2153, 2009.

Remark

- Rectification could be included in the non-linearity layer.
- But also it can be seen as an independent layer.

Given that we are using Backpropagation

We need a soft approximation to $f(x)=|x|$
For this, we have

$$
\frac{\partial f}{\partial x}=\operatorname{sgn}(x)
$$

- When $x \neq 0$. Why?

Given that we are using Backpropagation

We need a soft approximation to $f(x)=|x|$
For this, we have

$$
\frac{\partial f}{\partial x}=\operatorname{sgn}(x)
$$

- When $x \neq 0$. Why?

We can use the following approximation

$$
\operatorname{sgn}(x)=2\left(\frac{\exp \{k x\}}{1+\exp \{k x\}}\right)-1
$$

Given that we are using Backpropagation

We need a soft approximation to $f(x)=|x|$
For this, we have

$$
\frac{\partial f}{\partial x}=\operatorname{sgn}(x)
$$

- When $x \neq 0$. Why?

We can use the following approximation

$$
\operatorname{sgn}(x)=2\left(\frac{\exp \{k x\}}{1+\exp \{k x\}}\right)-1
$$

Therefore, we have by integration and working the C

$$
f(x)=\frac{2}{k} \ln (1+\exp \{k x\})-x-\frac{2}{k} \ln (2)
$$

We get the following situation

Something Notable

$$
f(x)=\frac{2}{k} \ln (1+\exp \{k x\})-x-\frac{2}{k} \ln (2)
$$

Outline

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity

Sharing Parameters

(3) Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.
- To enforce competitiveness units at the same spatial location.

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.
- To enforce competitiveness units at the same spatial location.

We have two types of operations

- Subtractive Normalization.

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.
- To enforce competitiveness units at the same spatial location.

We have two types of operations

- Subtractive Normalization.
- Brightness Normalization.

Subtractive Normalization

Given $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$
The output of layer l comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

Subtractive Normalization

Given $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$
The output of layer l comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

With the operation

$$
\begin{equation*}
Y_{i}^{(l)}=Y_{i}^{(l-1)}-\sum_{j=1}^{m_{1}^{(l-1)}} K_{G(\sigma)} * Y_{j}^{(l-1)} \tag{11}
\end{equation*}
$$

Subtractive Normalization

Given $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$

The output of layer l comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

With the operation

$$
\begin{equation*}
Y_{i}^{(l)}=Y_{i}^{(l-1)}-\sum_{j=1}^{m_{1}^{(l-1)}} K_{G(\sigma)} * Y_{j}^{(l-1)} \tag{11}
\end{equation*}
$$

With

$$
\begin{equation*}
\left(K_{G(\sigma)}\right)_{x, y}=\frac{1}{\sqrt{2 \pi} \sigma^{2}} \exp \left\{\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right\} \tag{12}
\end{equation*}
$$

Brightness Normalization

An alternative is to normalize the brightness in combination with the rectified linear units

$$
\begin{equation*}
\left(Y_{i}^{(l)}\right)_{x, y}=\frac{\left(Y_{i}^{(l-1)}\right)_{x, y}}{\left(\kappa+\lambda \sum_{j=1}^{m_{1}^{(l-1)}}\left(Y_{j}^{(l-1)}\right)_{x, y}^{2}\right)^{\mu}} \tag{13}
\end{equation*}
$$

Brightness Normalization

An alternative is to normalize the brightness in combination with the rectified linear units

$$
\begin{equation*}
\left(Y_{i}^{(l)}\right)_{x, y}=\frac{\left(Y_{i}^{(l-1)}\right)_{x, y}}{\left(\kappa+\lambda \sum_{j=1}^{m_{1}^{(l-1)}}\left(Y_{j}^{(l-1)}\right)_{x, y}^{2}\right)^{\mu}} \tag{13}
\end{equation*}
$$

Where

- κ, μ and λ are hyperparameters which can be set using a

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

validation set.

Outline

Introduction

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2 Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters

(3) Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
-

Rectification Layer

- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- Strides
- Normalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{\text {r.s.k }}$
- Deriving the Kernel Filters

Sub-sampling Layer

Motivation

The motivation of subsampling the feature maps obtained by previous layers is robustness to noise and distortions.

Sub-sampling Layer

Motivation

The motivation of subsampling the feature maps obtained by previous layers is robustness to noise and distortions.

How?

- Normally, in traditional Convolutional Networks subsampling this is done by applying skipping factors!!!
- However, it is possible to combine subsampling with pooling and do it in a separate layer

Sub-sampling

The subsampling layer

- It seems to be acting as the well know sub-sampling pyramid

How is sub-sampling implemented?

We know that Image Pyramids

They were designed to find:

How is sub-sampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,

How is sub-sampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,
(2) To extract features/structures of interest,

How is sub-sampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,
(2) To extract features/structures of interest,
(3) To attenuate noise.

How is sub-sampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,
(2) To extract features/structures of interest,
(3) To attenuate noise.

Example of usage of this filters

- The SURF and SIFT filters

There are also other ways of doing this

subsampling can be done using so called skipping factors

$s_{1}^{(l)}$ and $s_{2}^{(l)}$

There are also other ways of doing this

subsampling can be done using so called skipping factors

$$
s_{1}^{(l)} \text { and } s_{2}^{(l)}
$$

The basic idea is to skip a fixed number of pixels

Therefore the size of the output feature map is given by

$$
m_{2}^{(l)}=\frac{m_{2}^{(l-1)}-2 h_{1}^{(l)}}{s_{1}^{(l)}+1} \text { and } m_{3}^{(l)}=\frac{m_{3}^{(l-1)}-2 h_{2}^{(l)}}{s_{2}^{(l)}+1}
$$

What is Pooling?

Pooling

- Spatial pooling is way to compute image representation based on encoded local features.

Pooling

Let l be a pooling layer

- It outputs from $m_{i}^{(l)}>m_{i}^{(l-1)}$ feature maps of reduced size.

Pooling

Let l be a pooling layer

- It outputs from $m_{i}^{(l)}>m_{i}^{(l-1)}$ feature maps of reduced size.

Pooling Operation

It operates by placing windows at non-overlapping positions in each feature map and keeping one value per window such that the feature maps are sub-sampled.

Thus

In the previous example

- All feature maps are pooled and sub-sampled individually.

Thus

In the previous example

- All feature maps are pooled and sub-sampled individually.

Each unit

- In one of the $m_{1}^{(l)}=4$ output feature maps represents the average or the maximum within a fixed window of the corresponding feature map in layer $(l-1)$.

Examples of pooling

Average pooling

When using a boxcar filter, the operation is called average pooling and the layer denoted by P_{A}.

Examples of pooling

Max pooling

For max pooling, the maximum value of each window is taken. The layer is denoted by P_{M}.

An interesting property

Something notable depending in the pooling area

- "In all cases, pooling helps to make the representation become approximately invariant to small translations of the input. Invariance to translation means that if we translate the input by a small amount, the values of most of the pooled outputs do not change."
- Page 342, Ian Goodfellow, Introduction to Deep Learning, 2016 [11].

An interesting property

Something notable depending in the pooling area

- "In all cases, pooling helps to make the representation become approximately invariant to small translations of the input. Invariance to translation means that if we translate the input by a small amount, the values of most of the pooled outputs do not change."
- Page 342, Ian Goodfellow, Introduction to Deep Learning, 2016 [11].

The small amount

- In the case of the previous examples, 1 pixel

Other Poolings

There are other types of pooling

- L_{2} norm of a rectangular neighborhood
- Weighted average based on the distance from the central pixel

Other Poolings

There are other types of pooling

- L_{2} norm of a rectangular neighborhood
- Weighted average based on the distance from the central pixel

However, we have another way of doing pooling

- Striding!!!

Springerberg et al. [12]

They started talking about sustituing maxpooling for something called a Stride on the Convolution

$$
\left(Y_{i}^{(l)}\right)_{x, y}=\left(B_{i}^{(l)}\right)_{x, y}+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{i j}^{(l)}\right)_{k, t}\left(Y_{j}^{(l-1)}\right)_{x-k, x-t}
$$

Springerberg et al. [12]

They started talking about sustituing maxpooling for something called a Stride on the Convolution

$$
\left(Y_{i}^{(l)}\right)_{x, y}=\left(B_{i}^{(l)}\right)_{x, y}+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{i j}^{(l)}\right)_{k, t}\left(Y_{j}^{(l-1)}\right)_{x-k, x-t}
$$

This is a Heuristic ...

- Basically you jump around by a factro r and t for the width and height of the layer
- It was proposed to decrease memory usage...

Example

Horizontal Stride

Horizontal Stride $r=2$

Example

Horizontal Stride

Horizontal Stride $r=2$

				,				

三

Example

Horizontal Stride

Horizontal Stride $r=2$

						，		

There are attempts to understand its effects

At Convolution Level and using Tensors [13]

- "Take it in your stride: Do we need striding in CNNs?" by Chen Kong, Simon Lucey [14]

There are attempts to understand its effects

At Convolution Level and using Tensors [13]

- "Take it in your stride: Do we need striding in CNNs?" by Chen Kong, Simon Lucey [14]

Please read Kolda's Paper before you get into the other

- You need a little bit of notation...

Outline

The Long Path

- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- Strides
- Normalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Here, the people at Google [15] around 2015

They commented in the "Internal Covariate Shift Phenomena"

- Due to the change in the distribution of each layer's input

Here, the people at Google [15] around 2015

They commented in the "Internal Covariate Shift Phenomena"

- Due to the change in the distribution of each layer's input

They claim

- The min-batch forces to have those changes which impact on the learning capabilities of the network.

Here, the people at Google [15] around 2015

They commented in the "Internal Covariate Shift Phenomena"

- Due to the change in the distribution of each layer's input

They claim

- The min-batch forces to have those changes which impact on the learning capabilities of the network.

In Neural Networks, they define this

- Internal Covariate Shift as the change in the distribution of network activation's due to the change in network parameters during training.

They gave the following reasons

Consider a layer with the input u that adds the learned bias b

- Then, it normalizes the result by subtracting the mean of the activation over the training data:

$$
\widehat{\boldsymbol{x}}=\boldsymbol{x}-E[\boldsymbol{x}]
$$

- $\mathcal{X}=\left\{\boldsymbol{x}, \ldots, \boldsymbol{x}_{N}\right\}$ the data samples and $E[\boldsymbol{x}]=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$

They gave the following reasons

Consider a layer with the input u that adds the learned bias b

- Then, it normalizes the result by subtracting the mean of the activation over the training data:

$$
\widehat{\boldsymbol{x}}=\boldsymbol{x}-E[\boldsymbol{x}]
$$

- $\mathcal{X}=\left\{\boldsymbol{x}, \ldots, \boldsymbol{x}_{N}\right\}$ the data samples and $E[\boldsymbol{x}]=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$

Now, if the gradient ignores the dependence of $E[x]$ on b

- Then $b=b+\Delta b$ where $\Delta b \propto-\frac{\partial l}{\partial \vec{x}}$

They gave the following reasons

Consider a layer with the input u that adds the learned bias b

- Then, it normalizes the result by subtracting the mean of the activation over the training data:

$$
\widehat{\boldsymbol{x}}=\boldsymbol{x}-E[\boldsymbol{x}]
$$

- $\mathcal{X}=\left\{\boldsymbol{x}, \ldots, \boldsymbol{x}_{N}\right\}$ the data samples and $E[\boldsymbol{x}]=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$

Now, if the gradient ignores the dependence of $E[\boldsymbol{x}]$ on b

- Then $b=b+\Delta b$ where $\Delta b \propto-\frac{\partial l}{\partial \widehat{x}}$

Finally

$$
u+(b+\Delta b)-E[u+(b+\Delta b)]=u+b-E[u+b]
$$

Then

The following will happen

- The update to b by Δb leads to no change in the output of the layer.

Then

The following will happen

- The update to b by Δb leads to no change in the output of the layer.

Therefore

- We need to integrate the normalization into the process of training.

Normalization via Mini-Batch Statistic

It is possible to describe the normalization as a transformation layer

$$
\widehat{\boldsymbol{x}}=\operatorname{Norm}(\boldsymbol{x}, \mathcal{X})
$$

- Which depends on all the training samples \mathcal{X} which also depends on the layer parameters

Normalization via Mini-Batch Statistic

It is possible to describe the normalization as a transformation layer

$$
\widehat{\boldsymbol{x}}=\operatorname{Norm}(\boldsymbol{x}, \mathcal{X})
$$

- Which depends on all the training samples \mathcal{X} which also depends on the layer parameters

For back-propagation, we will need to generate the following terms

$$
\frac{\partial N o r m(\boldsymbol{x}, \mathcal{X})}{\partial \boldsymbol{x}} \text { and } \frac{\partial \operatorname{Norm}(\boldsymbol{x}, \mathcal{X})}{\partial \mathcal{X}}
$$

Definition of Whitening

Whitening

- Suppose X is a random (column) vector with non-singular covariance matrix Σ and mean 0 .

Definition of Whitening

Whitening

- Suppose X is a random (column) vector with non-singular covariance matrix Σ and mean 0 .

Then

- Then the transformation $Y=W X$ with a whitening matrix W satisfying the condition $W^{T} W=\Sigma^{-1}$ yields the whitened random vector Y with unit diagonal covariance.

Such Normalization

It could be used for all layer

- But whitening the layer inputs is expensive, as it requires computing the covariance matrix

$$
\operatorname{Cov}[\boldsymbol{x}]=E_{\boldsymbol{x} \in \mathcal{X}}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right] \text { and } E[\boldsymbol{x}] E[\boldsymbol{x}]^{T}
$$

- To produce the whitened activations

Therefore

A Better Options, we can normalize each input layer

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-\mu}{\sigma}
$$

- with $\mu=E\left[\boldsymbol{x}^{(k)}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]$

Therefore

A Better Options, we can normalize each input layer

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-\mu}{\sigma}
$$

- with $\mu=E\left[\boldsymbol{x}^{(k)}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]$

This allows to speed up convergence

- Simply normalizing each input of a layer may change what the layer can represent.

Therefore

A Better Options, we can normalize each input layer

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-\mu}{\sigma}
$$

- with $\mu=E\left[\boldsymbol{x}^{(k)}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]$

This allows to speed up convergence

- Simply normalizing each input of a layer may change what the layer can represent.

So, we need to insert a transformation in the network

- Which can represent the identity transform

The Transformation

The Linear transformation

$$
\boldsymbol{y}^{(k)}=\gamma^{(k)} \widehat{\boldsymbol{x}}^{(k)}+\beta^{(k)}
$$

The Transformation

The Linear transformation

$$
\boldsymbol{y}^{(k)}=\gamma^{(k)} \widehat{\boldsymbol{x}}^{(k)}+\beta^{(k)}
$$

The parameters $\gamma^{(k)}, \beta^{(k)}$

- This allow to recover the identity by setting $\gamma^{(k)}=\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}$ and $\beta^{(k)}=E\left[\boldsymbol{x}^{(k)}\right]$ if necessary.

Finally

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$

Finally

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$

Finally

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$
(2) $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu\right)^{2}$

Finally

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$
(2) $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu\right)^{2}$
(3) $\hat{\boldsymbol{x}}=\frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}$

Finally

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$
(2) $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu\right)^{2}$
(3) $\widehat{x}=\frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}$
(9) $\boldsymbol{y}_{i}=\gamma^{(k)} \widehat{\boldsymbol{x}}_{i}+\beta=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)$

Backpropagation

We have the following equations by using the loss function l
(1) $\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}}=\frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \gamma$

Backpropagation

We have the following equations by using the loss function l
(1) $\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}}=\frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \gamma$
(2) $\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right) \times\left(-\frac{1}{2}\right) \times\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-\frac{3}{2}}$

Backpropagation

We have the following equations by using the loss function l

(1) $\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}}=\frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \gamma$
(2) $\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right) \times\left(-\frac{1}{2}\right) \times\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-\frac{3}{2}}$
(3) $\frac{\partial l}{\partial \mu_{\mathcal{B}}}=\left(\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}\right)+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{\sum_{i=1}^{m}-2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}$

Backpropagation

We have the following equations by using the loss function l

(1) $\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}}=\frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \gamma$
(2) $\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right) \times\left(-\frac{1}{2}\right) \times\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-\frac{3}{2}}$
(3) $\frac{\partial l}{\partial \mu_{\mathcal{B}}}=\left(\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}\right)+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{\sum_{i=1}^{m}-2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}$
(4) $\frac{\partial l}{\partial \boldsymbol{x}_{i}}=\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}+\frac{\partial l}{\partial \mu_{\mathcal{B}}} \times \frac{1}{m}$

Backpropagation

We have the following equations by using the loss function l

(1) $\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}}=\frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \gamma$
(2) $\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right) \times\left(-\frac{1}{2}\right) \times\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-\frac{3}{2}}$
(3) $\frac{\partial l}{\partial \mu_{\mathcal{B}}}=\left(\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}\right)+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{\sum_{i=1}^{m}-2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}$
(4) $\frac{\partial l}{\partial \boldsymbol{x}_{i}}=\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}+\frac{\partial l}{\partial \mu_{\mathcal{B}}} \times \frac{1}{m}$
(5) $\frac{\partial l}{\partial \gamma}=\sum_{i=1}^{m} \frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \widehat{\boldsymbol{x}}_{i}$

Backpropagation

We have the following equations by using the loss function l

(1) $\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}}=\frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \gamma$
(2) $\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right) \times\left(-\frac{1}{2}\right) \times\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-\frac{3}{2}}$
(3) $\frac{\partial l}{\partial \mu_{\mathcal{B}}}=\left(\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}\right)+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{\sum_{i=1}^{m}-2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}$
(4) $\frac{\partial l}{\partial \boldsymbol{x}_{i}}=\frac{\partial l}{\partial \widehat{\boldsymbol{x}}_{i}} \times \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}+\frac{\partial l}{\partial \sigma_{\mathcal{B}}^{2}} \times \frac{2 \times\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)}{m}+\frac{\partial l}{\partial \mu_{\mathcal{B}}} \times \frac{1}{m}$
(5) $\frac{\partial l}{\partial \gamma}=\sum_{i=1}^{m} \frac{\partial l}{\partial \boldsymbol{y}_{i}} \times \widehat{\boldsymbol{x}}_{i}$
(6) $\frac{\partial l}{\partial \beta}=\sum_{i=1}^{m} \frac{\partial l}{\partial \boldsymbol{y}_{i}}$

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$
Output: Batch-normalized network for inference $N_{B N}^{i n f}$

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do

3
Add transformation $y^{(k)}=B N_{\gamma^{(k), \beta^{(k)}}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead
(5) Train $N_{B N}^{t r}$ to optimize the parameters $\Theta \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead
(5) Train $N_{B N}^{t r}$ to optimize the parameters $\Theta \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
(6) $N_{B N}^{i n f}=N_{B N}^{t r} / /$ Inference BN network with frozen parameters

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead
(5) Train $N_{B N}^{t r}$ to optimize the parameters $\Theta \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
(6) $N_{B N}^{i n f}=N_{B N}^{t r} / /$ Inference BN network with frozen parameters
(7) for $k=1 \ldots K$ do

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead
(5) Train $N_{B N}^{t r}$ to optimize the parameters $\Theta \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
(6) $N_{B N}^{i n f}=N_{B N}^{t r} / /$ Inference BN network with frozen parameters
(7) for $k=1 \ldots K$ do

Process multiple training mini-batches \mathcal{B}, each of size m, and average over them

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead
(5) Train $N_{B N}^{t r}$ to optimize the parameters $\Theta \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
(6) $N_{B N}^{i n f}=N_{B N}^{t r} / /$ Inference BN network with frozen parameters
(7) for $k=1 \ldots K$ do

Process multiple training mini-batches \mathcal{B}, each of size m, and average over them
(9) $E[x]=E_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right]$ and $\operatorname{Var}[\boldsymbol{x}]=\frac{m}{m-1}{ }_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]$

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{K}$ Output: Batch-normalized network for inference $N_{B N}^{i n f}$
(1) $N_{B N}^{t r}=N / /$ Training BN network
(2) for $k=1 \ldots K$ do
(3) Add transformation $y^{(k)}=B N_{\gamma^{(k)}, \beta^{(k)}}\left(\boldsymbol{x}^{(k)}\right)$ to $N_{B N}^{t r}$
(4) Modify each layer in $N_{B N}^{t r}$ with input $\boldsymbol{x}^{(k)}$ to take $\boldsymbol{y}^{(k)}$ instead
(5) Train $N_{B N}^{t r}$ to optimize the parameters $\Theta \cup\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
(6) $N_{B N}^{i n f}=N_{B N}^{t r} / /$ Inference BN network with frozen parameters
(7) for $k=1 \ldots K$ do

Process multiple training mini-batches \mathcal{B}, each of size m, and average over them
(9) $E[x]=E_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right]$ and $\operatorname{Var}[\boldsymbol{x}]=\frac{m}{m-1}{ }_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]$
(10) $\ln N_{B N}^{i n f}$, replace the transform $y=B N_{\gamma, \beta}(x)$ with
(11)

$$
\boldsymbol{y}=\frac{\gamma}{\sqrt{\operatorname{Var}[\boldsymbol{x}]+\epsilon}} \times \boldsymbol{x}+\left[\beta-\frac{\gamma E[\boldsymbol{x}]}{\sqrt{\operatorname{Var}[\boldsymbol{x}]+\epsilon}}\right]
$$

However

Santurkar et al. [16]

- They found thats is not the covariance shift the one affected by it!!!

However

Santurkar et al. [16]

- They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that

- Batch normalization has been arguably one of the most successful architectural innovations in deep learning.

However

Santurkar et al. [16]

- They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that

- Batch normalization has been arguably one of the most successful architectural innovations in deep learning.

They used a standard Very deep convolutional network

- on CIFAR-10 with and without BatchNorm

They found something quite interesting

The following facts

Actually Batch Normalization

It does not do anything to the Internal Covariate Shift

- Actually smooth the optimization manifold
- It is not the only way to achieve it!!!

Actually Batch Normalization

It does not do anything to the Internal Covariate Shift

- Actually smooth the optimization manifold
- It is not the only way to achieve it!!!

They suggest that

- "This suggests that the positive impact of BatchNorm on training might be somewhat serendipitous."

They actually have a connected result

To the analysis of gradient clipping!!!

- They are the same group

They actually have a connected result

To the analysis of gradient clipping!!!

- They are the same group

Theorem (The effect of BatchNorm on the Lipschitzness of the loss)

- For a BatchNorm network with loss $\widehat{\mathcal{L}}$ and an identical non-BN network with (identical) loss \mathcal{L},

$$
\left\|\nabla_{\boldsymbol{y}_{j}} \widehat{\mathcal{L}}\right\|^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}}\left[\left\|\nabla_{y_{j}} \mathcal{L}\right\|^{2}-\frac{1}{m}\left\langle\mathbf{1}, \nabla_{y_{j}} \mathcal{L}\right\rangle^{2}-\frac{1}{\sqrt{m}}\left\langle\nabla_{y_{j}} \mathcal{L}, \widehat{\boldsymbol{y}}_{j}\right\rangle^{2}\right]
$$

Outline

The Long Path

- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2) Convolutional Networks

- History
- Local Connectivity

Sharing Parameters

(3) Layers

- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- Strides
- Normalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
-

Backpropagation

- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

Fully Connected Layer

If a layer l is a fully connected layer

- If layer $(l-1)$ is a fully connected layer, use the equation to compute the output of $i^{\text {th }}$ unit at layer l :

$$
z_{i}^{(l)}=\sum_{k=0}^{m^{(l)}} w_{i, k}^{(l)} y_{k}^{(l)} \text { thus } y_{i}^{(l)}=f\left(z_{i}^{(l)}\right)
$$

Fully Connected Layer

If a layer l is a fully connected layer

- If layer $(l-1)$ is a fully connected layer, use the equation to compute the output of $i^{\text {th }}$ unit at layer l :

$$
z_{i}^{(l)}=\sum_{k=0}^{m^{(l)}} w_{i, k}^{(l)} y_{k}^{(l)} \text { thus } y_{i}^{(l)}=f\left(z_{i}^{(l)}\right)
$$

Otherwise

- Layer l expects $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$ as input.

Thus, the $i^{\text {th }}$ unit in layer l computes

$$
\begin{aligned}
& y_{i}^{(l)}=f\left(z_{i}^{(l)}\right) \\
& z_{i}^{(l)}=\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{r=1}^{m_{2}^{(l-1)}} \sum_{s=1}^{m_{3}^{(l-1)}} w_{i, j, r, s}^{(l)}\left(Y_{j}^{(l-1)}\right)_{r, s}
\end{aligned}
$$

Here

Where $w_{i, j, r, s}^{(l)}$

- It denotes the weight connecting the unit at position (r, s) in the $j^{t h}$ feature map of layer $(l-1)$ and the $i^{\text {th }}$ unit in layer l.

Here

Where $w_{i, j, r, s}^{(l)}$

- It denotes the weight connecting the unit at position (r, s) in the $j^{\text {th }}$ feature map of layer $(l-1)$ and the $i^{\text {th }}$ unit in layer l.

Something Notable

- In practice, Convolutional Layers are used to learn a feature hierarchy and one or more fully connected layers are used for classification purposes based on the computed features.

Basically

We can use a loss function at the output of such layer

$$
\begin{aligned}
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K}\left(y_{n k}^{(l)}-t_{n k}\right)^{2} \text { (Sum of Squared Error) } \\
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \log \left(y_{n k}^{(l)}\right) \text { (Cross-Entropy Error) }
\end{aligned}
$$

Basically

We can use a loss function at the output of such layer

$$
\begin{aligned}
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K}\left(y_{n k}^{(l)}-t_{n k}\right)^{2} \text { (Sum of Squared Error) } \\
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \log \left(y_{n k}^{(l)}\right) \text { (Cross-Entropy Error) }
\end{aligned}
$$

Assuming W the tensor used to represent all the possible weights

- We can use the Backpropagation idea as long we can apply the corresponding derivatives.

About this

As part of the seminar

- We are preparing a series of slides about Loss Functions...

Outline

Introduction

- The Long Path
- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2. Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer

Sub-sampling and Pooling

- Strides
- Normalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture

- Backpropagation
- Deriving $w_{r, s, k}$Deriving the Kernel Filters

We have the following Architecture

Simplified Architecture by Jean LeCun "Backpropagation applied to handwritten zip code recognition"

Therefore, we have

Layer $l=1$

- This Layer is using a ReLu f with 3 channels

$$
\begin{aligned}
& \left(Y_{1}^{(l)}\right)_{x, y}=\left(B_{1}^{(l)}\right)_{x, y}+\sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{11}^{(l)}\right)_{k, t}\left(Y_{1}^{(l-1)}\right)_{x-k, x-t} \\
& \left(Y_{2}^{(l)}\right)_{x, y}=\left(B_{2}^{(l)}\right)_{x, y}+\sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{21}^{(l)}\right)_{k, t}\left(Y_{1}^{(l-1)}\right)_{x-k, x-t} \\
& \left(Y_{3}^{(l)}\right)_{x, y}=\left(B_{3}^{(l)}\right)_{x, y}+\sum_{k=-h_{1}^{(l)}}^{\sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{31}^{(l)}\right)_{k, t}\left(Y_{1}^{(l-1)}\right)_{x-k, x-t}}
\end{aligned}
$$

Layer $l=2$

We have a maxpooling of size 2×2

$$
\left(Y_{i}^{(l)}\right)_{x^{\prime}, y^{\prime}}=\max \left\{\left(Y_{i}^{(l-1)}\right)_{x, y},\left(Y_{i}^{(l-1)}\right)_{x+1, y}\left(Y_{i}^{(l-1)}\right)_{x, y+1},\left(Y_{i}^{(l-1)}\right)_{x+1, y+1}\right\}
$$

Then, you repeat the previous process

Thus we obtain a reduced convoluted version $Y_{m}^{(3)}$ of the $Y_{n}^{(4)}$
 convolution and maxpooling

- Thus, we use those as inputs for the fully connected layer of input.

The fully connected layer

Now assuming a single $k=1$ neuron

$$
\begin{gathered}
y_{1}^{(6)}=f\left(z_{1}^{(5)}\right) \\
z_{1}^{(5)}=\sum_{k=1}^{9} \sum_{r=1}^{m_{2}^{(6)}} \sum_{s=1}^{m_{3}^{(6)}} w_{r, s, k}^{(5)}\left(Y_{k}^{(4)}\right)_{r, s}
\end{gathered}
$$

We have for simplicity sake

That our final cost function is equal to

$$
L=\frac{1}{2}\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}
$$

Outline

The Long Path

- The Problem of Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2) Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Convolutional Architectures
- A Little Bit of Notation
- Deconvolution Layer
- Alternating Minimization
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity LayerRectification Layer
- Local Contrast Normalization Layer
- Sub-sampling and Pooling
- StridesNormalization Layer AKA Batch Normalization
- Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture

- Backpropagation
- Deriving $w_{r, s, k}$
- Deriving the Kernel Filters

After collecting all input/output

Therefore

- We have using sum of squared errors (loss function):

$$
L=\frac{1}{2}\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}
$$

After collecting all input/output

Therefore

- We have using sum of squared errors (loss function):

$$
L=\frac{1}{2}\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}
$$

Therefore, we can obtain

$$
\frac{\partial L}{\partial w_{r, s, k}^{(5)}}=\frac{1}{2} \times \frac{\partial\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}}{\partial w_{r, s, k}^{(5)}}
$$

Therefore

We get in the first part of the equation

$$
\frac{\partial\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}}{\partial w_{r, s, k}^{(5)}}=\left(y_{1}^{(6)}-t_{1}^{(6)}\right) \frac{\partial y_{1}^{(6)}}{\partial w_{r, s, k}^{(5)}}
$$

Therefore

We get in the first part of the equation

$$
\frac{\partial\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}}{\partial w_{r, s, k}^{(5)}}=\left(y_{1}^{(6)}-t_{1}^{(6)}\right) \frac{\partial y_{1}^{(6)}}{\partial w_{r, s, k}^{(5)}}
$$

With

$$
y_{1}^{(6)}=\operatorname{Re} L u\left(z_{1}^{(5)}\right)
$$

Therefore

We have

$$
\frac{\partial y_{1}^{(6)}}{\partial w_{r, s, k}^{(5)}}=\frac{\partial f\left(z_{1}^{(5)}\right)}{\partial z_{1}^{(5)}} \times \frac{\partial z_{1}^{(5)}}{\partial w_{r, s, k}^{(5)}}
$$

Therefore

We have

$$
\frac{\partial y_{1}^{(6)}}{\partial w_{r, s, k}^{(5)}}=\frac{\partial f\left(z_{1}^{(5)}\right)}{\partial z_{1}^{(5)}} \times \frac{\partial z_{1}^{(5)}}{\partial w_{r, s, k}^{(5)}}
$$

Therefore if we use the approximation

$$
\frac{\partial f\left(z_{1}^{(5)}\right)}{\partial z_{1}^{(5)}}=\frac{e^{k z_{1}^{(5)}}}{\left(1+e^{k z_{1}^{(5)}}\right)}
$$

Now, we need to derive $\frac{\partial z_{1}^{(5)}}{\partial w_{r, s, k}^{5}}$

We know that

$$
z_{1}^{(5)}=\sum_{k=1}^{9} \sum_{r=1}^{m_{2}^{(6)}} \sum_{s=1}^{m_{3}^{(6)}} w_{r, s, k}^{(5)}\left(Y_{k}^{(4)}\right)_{r, s}
$$

Now, we need to derive $\frac{\partial z_{1}^{(5)}}{\partial w_{r, s, k}^{5}}$

We know that

$$
z_{1}^{(5)}=\sum_{k=1}^{9} \sum_{r=1}^{m_{2}^{(6)}} \sum_{s=1}^{m_{3}^{(6)}} w_{r, s, k}^{(5)}\left(Y_{k}^{(4)}\right)_{r, s}
$$

Now, we need to derive $\frac{\partial z_{1}^{(5)}}{\partial w_{r, s, k}^{(5)}}$

We know that

$$
z_{1}^{(5)}=\sum_{k=1}^{9} \sum_{r=1}^{m_{2}^{(6)}} \sum_{s=1}^{m_{3}^{(6)}} w_{r, s, k}^{(5)}\left(Y_{k}^{(4)}\right)_{r, s}
$$

Finally

$$
\frac{\partial z_{1}^{(5)}}{\partial w_{r, s, k}^{(5)}}=\left(Y_{k}^{(4)}\right)_{r, s}
$$

Maxpooling

This is not derived after all, but we go directly go for the max term

- Assume you get the max element for $f=1,2, \ldots, 9$ and $j=1$

$$
\left(Y_{f}^{(3)}\right)_{x, y}=\left(B_{f}^{(3)}\right)_{x, y}+\sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{f 1}^{(3)}\right)_{k, t}\left(Y_{1}^{(2)}\right)_{x-k, x-t}
$$

Therefore

We have then

$$
\frac{\partial L}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}=\frac{1}{2} \times \frac{\partial\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}
$$

Therefore

We have then

$$
\frac{\partial L}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}=\frac{1}{2} \times \frac{\partial\left(y_{1}^{(6)}-t_{1}^{(6)}\right)^{2}}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}
$$

We have the following chain of derivations given

$$
\left(Y_{f}^{(4)}\right)_{x, y}=f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]
$$

$$
\frac{\partial L}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}=\left(y_{1}^{(6)}-t_{1}^{(6)}\right) \frac{\partial f\left(z_{1}^{(5)}\right)}{\partial z_{1}^{(5)}} \times \frac{\partial z_{i}^{(5)}}{\partial\left(Y_{f}^{(4)}\right)_{x, y}} \times \frac{\partial f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}
$$

Therefore

We have

$$
\frac{\partial z_{i}^{(5)}}{\partial\left(Y_{f}^{(3)}\right)_{x, y}}=w_{x, y, f}^{(5)}
$$

Therefore

We have

$$
\frac{\partial z_{i}^{(5)}}{\partial\left(Y_{f}^{(3)}\right)_{x, y}}=w_{x, y, f}^{(5)}
$$

Then assuming that

$$
\left(Y_{f}^{(3)}\right)_{x, y}=\left(B_{f}^{(3)}\right)_{x, y}+\sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{f 1}^{(3)}\right)_{k, t}\left(Y_{1}^{(2)}\right)_{x-k, x-t}
$$

Therefore

We have

$$
\frac{\partial f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}=\frac{\partial f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]}{\partial\left(Y_{f}^{(3)}\right)_{x, y}} \times \frac{\partial\left(Y_{f}^{(3)}\right)_{x, y}}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}
$$

Therefore

We have

$$
\frac{\partial f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}=\frac{\partial f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]}{\partial\left(Y_{f}^{(3)}\right)_{x, y}} \times \frac{\partial\left(Y_{f}^{(3)}\right)_{x, y}}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}
$$

Then

$$
\frac{\partial f\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]}{\partial\left(Y_{f}^{(3)}\right)_{x, y}}=f^{\prime}\left[\left(Y_{f}^{(3)}\right)_{x, y}\right]
$$

Finally, we have

The equation

$$
\frac{\partial\left(Y_{f}^{(3)}\right)_{x, y}}{\partial\left(K_{f 1}^{(3)}\right)_{k, t}}=\left(Y_{1}^{(2)}\right)_{x-k, x-t}
$$

The Other Equations

I will leave you to devise them

- They are a repetitive procedure.

The Other Equations

I will leave you to devise them

- They are a repetitive procedure.

The interesting case the average pooling

- The others are the stride and the deconvolution
[1] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artificial Intelligence Review, vol. 53, no. 8, pp. 5455-5516, 2020.
[2] R. Szeliski, Computer Vision: Algorithms and Applications. Berlin, Heidelberg: Springer-Verlag, 1st ed., 2010.
[3] S. Haykin, Neural Networks and Learning Machines.
No. v. 10 in Neural networks and learning machines, Prentice Hall, 2009.
[4] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," The Journal of physiology, vol. 160, no. 1, p. 106, 1962.
[5] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[6] W. Zhang, K. Itoh, J. Tanida, and Y. Ichioka, "Parallel distributed processing model with local space-invariant interconnections and its optical architecture," Appl. Opt., vol. 29, pp. 4790-4797, Nov 1990.
[7] J. J. Weng, N. Ahuja, and T. S. Huang, "Learning recognition and segmentation of 3-d objects from 2-d images," in 1993 (4th) International Conference on Computer Vision, pp. 121-128, IEEE, 1993.
[8] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pp. 2528-2535, IEEE, 2010.
[9] D. Krishnan and R. Fergus, "Fast image deconvolution using hyper-laplacian priors," Advances in neural information processing systems, vol. 22, pp. 1033-1041, 2009.
[10] Y. Wang, J. Yang, W. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction," SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248-272, 2008.
[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.
[12] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity: The all convolutional net," 2015.
[13] T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM review, vol. 51, no. 3, pp. 455-500, 2009.
[14] C. Kong and S. Lucey, "Take it in your stride: Do we need striding in cnns?," arXiv preprint arXiv:1712.02502, 2017.
[15] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.
[16] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, "How does batch normalization help optimization?," in Advances in Neural Information Processing Systems, pp. 2483-2493, 2018.

