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The Long Path [1]
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Digital Images as pixels in a digitized matrix [2]

Ilumination
Source

Ilumination
Source

Output
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Further [2]

Pixel values typically represent
Gray levels, colors, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene
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Images

Common image formats include
On sample/pixel per point (B&W or Grayscale)
Three samples/pixel per point (Red, Green, and Blue)
Four samples/pixel per point (Red, Green, Blue, and “Alpha”)
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Therefore, we have the following process

Low Level Process

Imagen
Noise

Removal Sharpening
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Example

Edge Detection
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Then

Mid Level Process
Input Processes Output

Object
Image Recognition Attributes

Segmentation
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Example

Object Recognition
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Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.
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Multilayer Neural Network Classification

We have the following classification [3]
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Drawbacks of previous neural networks

The number of trainable parameters becomes extremely large

Large N

A

Z
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Drawbacks of previous neural networks
In addition, little or no invariance to shifting, scaling, and other forms
of distortion

Large N

A

Z
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Drawbacks of previous neural networks
In addition, little or no invariance to shifting, scaling, and other forms
of distortion

Large N

A

Z

Shift to the Left
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Drawbacks of previous neural networks

The topology of the input data is completely ignored
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For Example

We have
Black and white patterns: 232×32 = 21024

Gray scale patterns: 25632×32 = 2561024
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For Example

If we have an element that the network has never seen
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Possible Solution

We can minimize this drawbacks by getting
Fully connected network of sufficient size can produce outputs that
are invariant with respect to such variations.

Problem!!!
Training time
Network size
Free parameters
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Hubel/Wiesel Architecture

Something Notable [4]
D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

They commented
The visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells
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Something Like

We have
Feature Hierarchy

Simple cells

Complex cells

Hyper-complex cells
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History

Convolutional Neural Networks (CNN) were invented by [5]
In 1989, Yann LeCun and Yoshua Bengio introduced the concept of
Convolutional Neural networks.

Patterns of Local
Contrast Face Features

Faces

INPUT LAYERS HIDDEN LAYERS 1 HIDDEN LAYERS 2

OUTPUT
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About CNN’s

Something Notable
CNN’s Were neurobiologically motivated by the findings of locally sensitive
and orientation-selective nerve cells in the visual cortex.

In addition
They designed a network structure that implicitly extracts relevant
features.

Properties
Convolutional Neural Networks are a special kind of multi-layer neural
networks.
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About CNN’s

In addition
CNN is a feed-forward network that can extract topological properties
from an image.
Like almost every other neural networks they are trained with a
version of the back-propagation algorithm.
Convolutional Neural Networks are designed to recognize visual
patterns directly from pixel images with minimal preprocessing.
They can recognize patterns with extreme variability.
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Local Connectivity

We have the following idea [6]
Instead of using a full connectivity...

Input Image

We would have something like this

yi = f

(
n∑
i=1

wixi

)
(1)
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Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:
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Example

For gray scale, we get something like this

Input Image

Then, our formula changes

yi = f

∑
i∈Lp

wixi

 (2)
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Example

In the case of the 3 channels

Input Image

Thus

yi = f

 ∑
i∈Lp,c

wix
c
i

 (3)
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Solving the following problems...

First
Fully connected hidden layer would have an unmanageable number of
parameters

Second
Computing the linear activation of the hidden units would have been
quite expensive
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How this looks in the image...

We have

Receptive Field
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Parameter Sharing

Second Idea
Share matrix of parameters across certain units.

These units are organized into
The same feature “map”

I Where the units share same parameters (For example, the same mask)
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Example

We have something like this
Feature Map 1 Feature Map 2 Feature Map 3
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Now, in our notation

We have a collection of matrices representing this connectivity
Wij is the connection matrix the ith input channel with the jth
feature map.
In each cell of these matrices is the weight to be multiplied with the
local input to the local neuron.

An now why the name of convolution
Yes!!! The definition is coming now.
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Digital Images

In computer vision [2, 7]
We usually operate on digital (discrete) images:

Sample the 2D space on a regular grid.
Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values,
I : [a, b]× [c, d]→ [0..255]

i ↓

j−→
79 5 6 90 12 34 2 1
8 90 12 34 26 78 34 5
8 1 3 90 12 34 11 61
77 90 12 34 200 2 9 45
1 3 90 12 20 1 6 23
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Many times we want to eliminate noise in a image

For example a moving average
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This is defined as

This last moving average can be seen as

(I ∗ k) (i) =
n∑

j=−n

I (i− j)×K (j) = 1
N

−m∑
j=m

I (i− j) (4)

With I (j) representing the value of the pixel at position j,

K (j) =
{ 1
N

if j ∈ {−m,−m + 1, ..., 1, 0, 1, ..., m− 1, m}
0 else

with 0 < m < n.
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This can be generalized into the 2D images

Left I and Right I ∗K
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This can be generalized into the 2D images

Left I and Right I ∗K
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Moving average in 2D

Basically in 2D
We can define different types of filter using the idea of weighted
average

(I ∗K) (i, j) =
−m∑
s=m

m∑
l=−m

I (i− s, j − l)×K (s, l) (5)

For example, the Box Filter

K = 1
9

 1 1 1
1 1 1
1 1 1

 "The Box Filter" (6)

49 / 148



Moving average in 2D

Basically in 2D
We can define different types of filter using the idea of weighted
average

(I ∗K) (i, j) =
−m∑
s=m

m∑
l=−m

I (i− s, j − l)×K (s, l) (5)

For example, the Box Filter

K = 1
9

 1 1 1
1 1 1
1 1 1

 "The Box Filter" (6)

49 / 148



Another Example

The Gaussian Filter

K =


0 1 2 1 0
1 3 4 3 1
2 5 9 5 2
1 3 5 3 1
0 1 2 1 0


Thus, we can define the concept of convolution

Yes, using the previous ideas
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Convolution

Definition
Let I : [a, b]× [c, d]→ [0..255] be the image and
K : [e, f ]× [h, i]→ R be the kernel. The output of Convolving I
with K, denoted I ∗K is

(I ∗K) [x, y] =
n∑

s=−n

n∑
l=−n

I (x− s, y − l)×K (s, l)
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Now, why not to expand this idea

Imagine that a three channel image is splitted into a three feature
map

Feature Maps

52 / 148



Mathematically, we have the following

Map i

(I ∗ k) [x, y, o] =
3∑
c=1

n∑
l=−n

n∑
s=−n

I (x− l, y − s, c)× k (l, s, c, o)

Therefore
The convolution works as a

I Filter
I Encoder
I Decoder
I etc
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For Example, Encoder

We have the following situation

54 / 148



Notation

We have the following
Y

(l)
j is a matrix representing the l layer and jth feature map.

K
(l)
ij is the kernel filter with ith kernel for layer jth.

Therefore
We can see the Convolutional as a fusion of information from
different feature maps.

m
(l−1)
1∑
j=1

Y
(l−1)
j ∗K(l)

ij
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Thus, we have
Given a specific layer l, we have that ith feature map in such layer
equal to

Y
(l)

i (x, y) = B
(l)
i (x, y) +

m
(l−1)
1∑
j=1

ks∑
s=−ks

ks∑
l=−ks

Y
(l−1)

j (x− s, y − l)K(l)
ij (x, y)

Where
Y

(l)
i is the ith feature map in layer l.
B

(l)
i is the bias matrix for output j.

K
(l)
ij is the filter of size

[
2h(l)

1 + 1
]
×
[
2h(l)

2 + 1
]
.

Thus
The input of layer l comprises m(l−1)

1 feature maps from the previous layer,
each of size m(l−1)

2 ×m(l−1)
3 56 / 148
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The input of layer l comprises m(l−1)

1 feature maps from the previous layer,
each of size m(l−1)

2 ×m(l−1)
3 56 / 148



Therefore

Thew output of layer l
It consists m(l)

1 feature maps of size m(l)
2 ×m

(l)
3

Something Notable
m

(l)
2 and m(l)

3 are influenced by border effects.
Therefore, the output feature maps when the Convolutional sum is
defined properly have size

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

m
(l)
3 = m

(l−1)
3 − 2h(l)

2
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Why? The Border

Example
Convolutional Maps

58 / 148



Special Case

When l = 1
The input is a single image I consisting of one or more channels.
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Thus

We have
Each feature map Y (l)

i in layer l consists of m(l)
1 ·m

(l)
2 units arranged in a

two dimensional array.

Thus, the unit at position (x, y) computes

(
Y

(l)
i

)
x,y

=
(
B

(l)
i

)
x,y

+
m

(l−1)
1∑
j=1

(
K

(l)
ij ∗ Y

(l−1)
j

)
x,y

=
(
B

(l)
i

)
x,y

+
m

(l−1)
1∑
j=1

h
(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
ij

)
k,t

(
Y

(l−1)
j

)
x−k,x−t
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Here, an interesting case

Only a Historical Note
The foundations for deconvolution came from Norbert Wiener of the
Massachusetts Institute of Technology in his book “Extrapolation,
Interpolation, and Smoothing of Stationary Time Series” (1949)

Basically, it tries to solve the following equation with Y (l) unknown
layer that we want to recover

Y
(l)
i ∗K

(l)
ij = Y

(l−1)
j
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In [8]

They proposed a sparcity idea to start the implementation as

C
(
Y (l−1)) =

m
(l−1)
1∑
i=1

∥∥∥∥∥∥
m

(l)
1∑

j=1

Y
(l)
j ∗K

(l)
ij − Y

(l−1)
i

∥∥∥∥∥∥
2

2

+
m

(l)
1∑

j=1

∣∣∣Y (l)
j

∣∣∣p
Typically, p = 1, although other values are possible.

They look for the arguments to minimize a cost of function over a set
of images y =

{
y1, ..., yI

}
arg min

Y
(l)
j ∗K

(l)
ij

C (y)
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Here

Then, we can generalize such cost function for that total set of
images (Minbatch)

Cl (y) = λ

2

I∑
k=1

m
(l−1)
1∑
i=1

∥∥∥∥∥∥∥
m

(l)
1∑

j=1
g

(l)
ij

(
Y

(l,k)
j ∗K(l)

ij

)
− Y (l−1,k)

i

∥∥∥∥∥∥∥
2

2

+
m

(l)
1∑

j=1

∣∣∣Y (l,k)
j

∣∣∣p

Here, we have
Y

(l−1,k)
i are the feature maps from the previous layer
g

(l)
ij is a fixed binary matrix that determines the connectivity between
feature maps at different layers

I If Y (l,k)
j is connected to certain Y (l−1,k)

i elments
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This can be sen as

We have the following layer

++ + +
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They noticed some drawbacks

Using the following optimizations
Direct Gradient Descent
Iterative Reweighted Least Squares
Stochastic Gradient Descent

All of they presented problems!!!
They solved it using a new cost function
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We have that

An interesting use of an auxiliar variable/layer X(l,k)
i

Cl (y) =λ

2

I∑
k=1

m
(l−1)
1∑
i=1

∥∥∥∥∥∥∥
m

(l)
1∑

j=1
g

(l)
ij

(
Y

(l,k)
j ∗K(l)

ij

)
− Y (l−1,k)

i

∥∥∥∥∥∥∥
2

2

+ ...

β

2

I∑
k=1

m
(l)
1∑

j=1

∥∥∥Y (l,k)
j −X(l,k)

i

∥∥∥2

2
+

I∑
k=1

m
(l)
1∑

j=1

∣∣∣Y (l,k)
j

∣∣∣p

This can be solved using
Alternating minimization...
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This is based on

Fixing the values of Y (l,k)
j and X(l,k)

i

They call these two stages the Y and X sub-problems...

Therefore, they noticed
These terms introduce the sparsity constraint and gives numerical
stability [9, 10]
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Y sub-problem

Taking the derivative of Y (l,k)
j

∂Cl (y)
∂Y

(l,k)
j

= λ

m
(l−1)
1∑
i=1

F
(l)T
ij

m
(l)
1∑

t=1
F

(l)
tj Y

(l,k)
j − Y (l−1,k)

j

+β
[
Y

(l,k)
j −X(l,k)

j

]
= 0

Where

F
(l)
ij =

It is a sparse convolution matrix if g(l)
ij = 1

0 if g(l)
ij = 0
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Therefore

F
(l)
ij as a sparse convolution matrix

Equivalent to convolve with K(l)
ij

Actually if you fix i, you finish with a linear system Ax = 0
Please take a look at the paper... it is interesting

I Actually this seems to be the implementation at the Tensorflow
framework
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The Long Path
The Problem of Image Processing
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Drawbacks
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Non-Linearity Layer
Fixing the Problem, ReLu function
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As in a Multilayer Perceptron
We use a non-linearity

However, there is a drawback when using Back-Propagation under a
sigmoid function

s (x) = 1
1 + e−x

Because if we imagine a Convolutional Network as a series of layer
functions fi

y (A) = ft ◦ ft−1 ◦ · · · ◦ f2 ◦ f1 (A)

With ft is the last layer.

Therefore, we finish with a sequence of derivatives
∂y (A)
∂w1i

= ∂ft (ft−1)
∂ft−1

· ∂ft−1 (ft−2)
∂ft−2

· · · · · ∂f2 (f1)
∂f2

· ∂f1 (A)
∂w1i
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Therefore

Given the commutativity of the product
You could put together the derivative of the sigmoid’s

f (x) = ds (x)
dx

= e−x

(1 + e−x)2

Therefore, deriving again
df (x)
dx

= − e−x

(1 + e−x)2 + 2 (e−x)2

(1 + e−x)3

After making df(x)
dx

= 0
We have the maximum is at x = 0
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Therefore

The maximum for the derivative of the sigmoid
f (0) = 0.25

Therefore, Given a Deep Convolutional Network
We could finish with

lim
k→∞

(
ds (x)
dx

)k
= lim

k→∞
(0.25)k → 0

A vanishing derivative
Making quite difficult to do train a deeper network using this
activation function
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Thus

The need to introduce a new function

f (x) = x+ = max (0, x)

It is called ReLu or Rectifier
With a smooth approximation (Softplus function)

f (x) =
ln
(
1 + ekx

)
k
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Therefore, we have

When k = 1

+0.4 +1.0 +1.6 +2.2 +2.8−0.4−1.0−1.6−2.2−2.8
−0.5

+0.5

+1.0

+1.5

+2.0

+2.5

+3.0

+3.5Softplus

ReLu
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Increase k

When k = 104

+0.0006 +0.0012 +0.0018 +0.0024−0.0004−0.001−0.0016−0.0022

−0.001

+0.001

+0.002

+0.003

+0.004

Softplus

ReLu
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Non-Linearity Layer

If layer l is a non-linearity layer
Its input is given by m(l)

1 feature maps.

What about the output
Its output comprises again m(l)

1 = m
(l−1)
1 feature maps

Each of them of size

m
(l−1)
2 ×m(l−1)

3 (7)

With m(l)
2 = m

(l−1)
2 and m(l)

3 = m
(l−1)
3 .
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Thus

With the final output

Y
(l)
i = f

(
Y

(l−1)
i

)
(8)

Where
f is the activation function used in layer l and operates point wise.

You can also add a gain to compensate

Y
(l)
i = gif

(
Y

(l−1)
i

)
(9)
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Rectification Layer, Rabs

Now a rectification layer
Then its input comprises m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

Then, the absolute value for each component of the feature maps is
computed

Y
(l)
i =

∣∣∣Y (l)
i

∣∣∣ (10)

Where the absolute value
It is computed point wise such that the output consists of m(l)

1 = m
(l−1)
1

feature maps unchanged in size.
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Thus

We have that
Experiments show that rectification plays a central role in achieving good
performance.

You can find this in
K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Computer Vision,
International Conference on, pages 2146–2153, 2009.

Remark
Rectification could be included in the non-linearity layer.
But also it can be seen as an independent layer.
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Given that we are using Backpropagation

We need a soft approximation to f (x) = |x|
For this, we have

∂f

∂x
= sgn (x)

When x 6= 0. Why?

We can use the following approximation

sgn (x) = 2
( exp {kx}

1 + exp {kx}

)
− 1

Therefore, we have by integration and working the C

f (x) = 2
k

ln (1 + exp {kx})− x− 2
k

ln (2)
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We get the following situation

Something Notable

+0.0001 +0.00025 +0.0004−0.0001−0.00025−0.0004

−0 0001

+0.0001

+0.0002

+0.0003

+0.0004

+0.0005

+0.0006

+0.0007
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Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.
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Subtractive Normalization

Given m(l−1)
1 feature maps of size m(l−1)

2 ×m(l−1)
3

The output of layer l comprises m(l)
1 = m

(l−1)
1 feature maps unchanged in

size.

With the operation

Y
(l)
i = Y

(l−1)
i −

m
(l−1)
1∑
j=1

KG(σ) ∗ Y
(l−1)
j (11)

With (
KG(σ)

)
x,y

= 1√
2πσ2 exp

{
x2 + y2

2σ2

}
(12)
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Brightness Normalization

An alternative is to normalize the brightness in combination with the
rectified linear units

(
Y

(l)
i

)
x,y

=

(
Y

(l−1)
i

)
x,y(

κ+ λ
∑m

(l−1)
1

j=1

(
Y

(l−1)
j

)2

x,y

)µ (13)

Where
κ, µ and λ are hyperparameters which can be set using a

f (x) =
ln
(
1 + ekx

)
k

validation set.
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Sub-sampling Layer

Motivation
The motivation of subsampling the feature maps obtained by previous
layers is robustness to noise and distortions.

How?
Normally, in traditional Convolutional Networks subsampling this is
done by applying skipping factors!!!
However, it is possible to combine subsampling with pooling and do it
in a separate layer
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Sub-sampling

The subsampling layer
It seems to be acting as the well know sub-sampling pyramid
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How is sub-sampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters
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There are also other ways of doing this

subsampling can be done using so called skipping factors

s
(l)
1 and s(l)

2

The basic idea is to skip a fixed number of pixels
Therefore the size of the output feature map is given by

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

s
(l)
1 + 1

and m(l)
3 = m

(l−1)
3 − 2h(l)

2

s
(l)
2 + 1
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What is Pooling?

Pooling
Spatial pooling is way to compute image representation
based on encoded local features.
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Pooling

Let l be a pooling layer
It outputs from m

(l)
i > m

(l−1)
i feature maps of reduced size.

Pooling Operation
It operates by placing windows at non-overlapping positions in each
feature map and keeping one value per window such that the feature maps
are sub-sampled.
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Thus

In the previous example
All feature maps are pooled and sub-sampled individually.

Each unit
In one of the m(l)

1 = 4 output feature maps represents the average or
the maximum within a fixed window of the corresponding feature map
in layer (l − 1).
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Examples of pooling

Average pooling
When using a boxcar filter, the operation is called average pooling and the
layer denoted by PA.

4 5
2 6

1 1

2 6
5 7 3

2 11

3

9

4.5 5

9 6.5
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Examples of pooling

Max pooling
For max pooling, the maximum value of each window is taken. The layer
is denoted by PM .

4 5
2 6

1 1

2 6
5 7 3

2 11

3

9

5

9 7

6
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An interesting property

Something notable depending in the pooling area
“In all cases, pooling helps to make the representation become
approximately invariant to small translations of the input. Invariance
to translation means that if we translate the input by a small amount,
the values of most of the pooled outputs do not change.”

I Page 342, Ian Goodfellow, Introduction to Deep Learning, 2016 [11].

The small amount
In the case of the previous examples, 1 pixel
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Other Poolings

There are other types of pooling
L2 norm of a rectangular neighborhood
Weighted average based on the distance from the central pixel

However, we have another way of doing pooling
Striding!!!
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Springerberg et al. [12]

They started talking about sustituing maxpooling for something
called a Stride on the Convolution

(
Y

(l)
i

)
x,y

=
(
B

(l)
i

)
x,y

+
m

(l−1)
1∑
j=1

h
(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
ij

)
k,t

(
Y

(l−1)
j

)
x−k,x−t

This is a Heuristic ...
Basically you jump around by a factro r and t for the width and
height of the layer

I It was proposed to decrease memory usage...
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Example

Horizontal Stride
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There are attempts to understand its effects

At Convolution Level and using Tensors [13]
“Take it in your stride: Do we need striding in CNNs?” by Chen
Kong, Simon Lucey [14]

Please read Kolda’s Paper before you get into the other
You need a little bit of notation...
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Here, the people at Google [15] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activation’s due to the change in network parameters during training.
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They gave the following reasons

Consider a layer with the input u that adds the learned bias b
Then, it normalizes the result by subtracting the mean of the
activation over the training data:

x̂ = x− E [x]

I X = {x, ...,xN} the data samples and E [x] = 1
N

∑N
i=1 xi

Now, if the gradient ignores the dependence of E [x] on b
Then b = b+ ∆b where ∆b ∝ − ∂l

∂x̂

Finally

u+ (b+ ∆b)− E[u+ (b+ ∆b)] =u+ b− E[u+ b]
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Then

The following will happen
The update to b by ∆b leads to no change in the output of the layer.

Therefore
We need to integrate the normalization into the process of training.
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Normalization via Mini-Batch Statistic

It is possible to describe the normalization as a transformation layer

x̂ = Norm (x,X )

Which depends on all the training samples X which also depends on
the layer parameters

For back-propagation, we will need to generate the following terms
∂Norm (x,X )

∂x
and ∂Norm (x,X )

∂X
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Definition of Whitening

Whitening
Suppose X is a random (column) vector with non-singular covariance
matrix Σ and mean 0.

Then
Then the transformation Y = WX with a whitening matrix W
satisfying the condition W TW = Σ−1 yields the whitened random
vector Y with unit diagonal covariance.
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Such Normalization

It could be used for all layer
But whitening the layer inputs is expensive, as it requires computing
the covariance matrix

Cov [x] = Ex∈X
[
xxT

]
and E [x]E [x]T

I To produce the whitened activations
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Therefore

A Better Options, we can normalize each input layer

x̂(k) = x(k) − µ
σ

with µ = E
[
x(k)

]
and σ2 = V ar

[
x(k)

]
This allows to speed up convergence

Simply normalizing each input of a layer may change what the layer
can represent.

So, we need to insert a transformation in the network
Which can represent the identity transform
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The Transformation

The Linear transformation

y(k) = γ(k)x̂(k) + β(k)

The parameters γ(k), β(k)

This allow to recover the identity by setting γ(k) =
√
V ar

[
x(k)] and

β(k) = E
[
x(k)

]
if necessary.
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Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)
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Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi
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i=1

∂l
∂yi
× x̂i

6 ∂l
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∂l
∂yi
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Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{

x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)
to Ntr

BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x +

[
β − γE[x]√

V ar[x]+ε

]
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However

Santurkar et al. [16]
They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that
Batch normalization has been arguably one of the most successful
architectural innovations in deep learning.

They used a standard Very deep convolutional network
on CIFAR-10 with and without BatchNorm
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They found something quite interesting

The following facts
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Actually Batch Normalization

It does not do anything to the Internal Covariate Shift
Actually smooth the optimization manifold

I It is not the only way to achieve it!!!

They suggest that
“This suggests that the positive impact of BatchNorm on training
might be somewhat serendipitous.”
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They actually have a connected result

To the analysis of gradient clipping!!!
They are the same group

Theorem (The effect of BatchNorm on the Lipschitzness of the loss)
For a BatchNorm network with loss L̂ and an identical non-BN
network with (identical) loss L,∥∥∥∇yj L̂

∥∥∥2
≤ γ2

σ2
j

[∥∥∥∇yjL∥∥∥2
− 1
m

〈
1,∇yjL

〉2
− 1√

m

〈
∇yjL, ŷj

〉2
]
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Fully Connected Layer

If a layer l is a fully connected layer
If layer (l − 1) is a fully connected layer, use the equation to compute
the output of ith unit at layer l:

z
(l)
i =

m(l)∑
k=0

w
(l)
i,ky

(l)
k thus y(l)

i = f
(
z

(l)
i

)

Otherwise
Layer l expects m(l−1)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 as input.
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Then

Thus, the ith unit in layer l computes

y
(l)
i =f

(
z

(l)
i

)
z

(l)
i =

m
(l−1)
1∑
j=1

m
(l−1)
2∑
r=1

m
(l−1)
3∑
s=1

w
(l)
i,j,r,s

(
Y

(l−1)
j

)
r,s
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Here

Where w(l)
i,j,r,s

It denotes the weight connecting the unit at position (r, s) in the jth
feature map of layer (l − 1) and the ith unit in layer l.

Something Notable
In practice, Convolutional Layers are used to learn a feature hierarchy
and one or more fully connected layers are used for classification
purposes based on the computed features.

124 / 148



Here

Where w(l)
i,j,r,s

It denotes the weight connecting the unit at position (r, s) in the jth
feature map of layer (l − 1) and the ith unit in layer l.

Something Notable
In practice, Convolutional Layers are used to learn a feature hierarchy
and one or more fully connected layers are used for classification
purposes based on the computed features.

124 / 148



Basically

We can use a loss function at the output of such layer

L (W ) =
N∑
n=1

En (W ) =
N∑
n=1

K∑
k=1

(
y

(l)
nk − tnk

)2
(Sum of Squared Error)

L (W ) =
N∑
n=1

En (W ) =
N∑
n=1

K∑
k=1

tnk log
(
y

(l)
nk

)
(Cross-Entropy Error)

Assuming W the tensor used to represent all the possible weights
We can use the Backpropagation idea as long we can apply the
corresponding derivatives.
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About this

As part of the seminar
We are preparing a series of slides about Loss Functions...
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We have the following Architecture

Simplified Architecture by Jean LeCun “Backpropagation applied to
handwritten zip code recognition”
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Therefore, we have

Layer l = 1
This Layer is using a ReLu f with 3 channels

(
Y

(l)
1

)
x,y

=
(

B
(l)
1

)
x,y

+
h

(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
11

)
k,t

(
Y

(l−1)
1

)
x−k,x−t

(
Y

(l)
2

)
x,y

=
(

B
(l)
2

)
x,y

+
h

(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
21

)
k,t

(
Y

(l−1)
1

)
x−k,x−t

(
Y

(l)
3

)
x,y

=
(

B
(l)
3

)
x,y

+
h

(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
31

)
k,t

(
Y

(l−1)
1

)
x−k,x−t
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Layer l = 2

We have a maxpooling of size 2× 2

(
Y

(l)
i

)
x′,y′

= max
{(

Y
(l−1)
i

)
x,y

,
(

Y
(l−1)
i

)
x+1,y

(
Y

(l−1)
i

)
x,y+1

,
(

Y
(l−1)
i

)
x+1,y+1

}
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Then, you repeat the previous process

Thus we obtain a reduced convoluted version Y (3)
m of the Y (4)

n

convolution and maxpooling
Thus, we use those as inputs for the fully connected layer of input.

131 / 148



The fully connected layer

Now assuming a single k = 1 neuron

y
(6)
1 =f

(
z

(5)
1

)
z

(5)
1 =

9∑
k=1

m
(6)
2∑

r=1

m
(6)
3∑

s=1
w

(5)
r,s,k

(
Y

(4)
k

)
r,s
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We have for simplicity sake

That our final cost function is equal to

L = 1
2
(
y

(6)
1 − t

(6)
1

)2
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After collecting all input/output

Therefore
We have using sum of squared errors (loss function):

L = 1
2
(
y

(6)
1 − t

(6)
1

)2

Therefore, we can obtain

∂L
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(5)
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= 1
2 ×

∂
(
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(6)
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)2
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Therefore

We get in the first part of the equation
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Therefore

We have
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Now, we need to derive ∂z
(5)
1

∂w
(5)
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Maxpooling

This is not derived after all, but we go directly go for the max term
Assume you get the max element for f = 1, 2, ..., 9 and j = 1
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f
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h
(l)
2∑

t=−h(l)
2

(
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)
k,t

(
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x−k,x−t
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Therefore

We have then
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Therefore
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Finally, we have

The equation

∂
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The Other Equations

I will leave you to devise them
They are a repetitive procedure.

The interesting case the average pooling
The others are the stride and the deconvolution
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