
 

 

Broadly, there are 3 types of Machine Learning Algorithms.. 

1. Supervised Learning 

How it works: This algorithm consist of a target / outcome variable (or dependent variable) which is to be predicted from a given set of predictors (independent 

variables). Using these set of variables, we generate a function that map inputs to desired outputs. The training process continues until the model achieves a 

desired level of accuracy on the training data. Examples of Supervised Learning: Regression, Decision Tree, Random Forest, KNN, Logistic Regression etc. 

2. Unsupervised Learning 

How it works: In this algorithm, we do not have any target or outcome variable to predict / estimate.  It is used for clustering population in different groups, which 

is widely used for segmenting customers in different groups for specific intervention. Examples of Unsupervised Learning: Apriori algorithm, K-means. 

  

3. Reinforcement Learning: 

How it works:  Using this algorithm, the machine is trained to make specific decisions. It works this way: the machine is exposed to an environment where it trains 

itself continually using trial and error. This machine learns from past experience and tries to capture the best possible knowledge to make accurate business 

decisions. Example of Reinforcement Learning: Markov Decision Process 

List of Common Machine Learning Algorithms 

Here is the list of commonly used machine learning algorithms. These algorithms can be applied to almost any data problem: 

1. Linear Regression 

2. Logistic Regression 

3. Decision Tree 

4. SVM 



 

5. Naive Bayes 

6. kNN 

7. K-Means 

8. Random Forest 

9. Dimensionality Reduction Algorithms 

10. Gradient Boosting algorithms 

1. GBM 

2. XGBoost 

3. LightGBM 

4. CatBoost 

1. Linear Regression 

It is used to estimate real values (cost of houses, number of calls, total sales etc.) based on continuous variable(s). Here, we establish relationship between 

independent and dependent variables by fitting a best line. This best fit line is known as regression line and represented by a linear equation Y= a *X + b. 

The best way to understand linear regression is to relive this experience of childhood. Let us say, you ask a child in fifth grade to arrange people in his class by 

increasing order of weight, without asking them their weights! What do you think the child will do? He / she would likely look (visually analyze) at the height and 

build of people and arrange them using a combination of these visible parameters. This is linear regression in real life! The child has actually figured out that height 

and build would be correlated to the weight by a relationship, which looks like the equation above. 

In this equation: 

Y – Dependent Variable a – Slope X – Independent variable b – Intercept 

These coefficients a and b are derived based on minimizing the sum of squared difference of distance between data points and regression line. 

Look at the below example. Here we have identified the best fit line having linear equation y=0.2811x+13.9. Now using this equation, we can find the weight, 

knowing the height of a person. 



 

 

Linear Regression is of mainly two types: Simple Linear Regression and Multiple Linear Regression. Simple Linear Regression is characterized by one independent 

variable. And, Multiple Linear Regression(as the name suggests) is characterized by multiple (more than 1) independent variables. While finding best fit line, you 

can fit a polynomial or curvilinear regression. And these are known as polynomial or curvilinear regression. 

Python Code 

#Import Library  

#Import other necessary libraries like pandas, numpy...  

from sklearn import linear_model  

#Load Train and Test datasets  

#Identify feature and response variable(s) and values mus t be numeric and numpy arrays  



 

x_train=input_variables_values_training_datasets y_train=target_variables_values_training_datasets 

x_test=input_variables_values_test_datasets  

# Create linear regression object linear = linear_model.LinearRegression()  

# Train the model using the training sets and check score linear.fit(x_train, y_train) linear.score(x_train, y_train) 

#Equation coefficient and Intercept print('Coefficient: \n', linear.coef_) print('Intercept: \n', linear.intercept_)  

#Predict Output  

predicted= linear.predict(x_test)  

R Code 

#Load Train and Test datasets  

#Identify feature and response variable(s) and values mus t be numeric and numpy arrays  

x_train <- input_variables_values_training_datasets y_train <- target_variables_values_training_datasets x_test <- 

input_variables_values_test_datasets x <- cbind(x_train,y_train)  

# Train the model using the training sets and check score linear <- lm(y_train ~ ., data = x)  



 

summary(linear) #Predict Output  

predicted= predict(linear,x_test)  

  

2. Logistic Regression 

Don’t get confused by its name! It is a classification not a regression algorithm. It is used to estimate discrete values ( Binary values like 0/1, yes/no, true/false ) 

based on given set of independent variable(s). In simple words, it predicts the probability of occurrence of an event by fitting data to a logit function. Hence, it is 

also known as logit regression. Since, it predicts the probability, its output values lies between 0 and 1 (as expected). 

Again, let us try and understand this through a simple example. 

Let’s say your friend gives you a puzzle to solve. There are only 2 outcome scenarios – either you solve it or you don’t. Now imagine, that you are being given wide 

range of puzzles / quizzes in an attempt to understand which subjects you are good at. The outcome to this study would be something like this – if you are given 

a trignometry based tenth grade problem, you are 70% likely to solve it. On the other hand, if it is grade fifth history question, the probability of getting an answer 

is only 30%. This is what Logistic Regression provides you. 

Coming to the math, the log odds of the outcome is modeled as a linear combination of the predictor variables. 

odds= p/ (1-p) = probability of event occurrence / probab ility of not event occurrence ln(odds) = ln(p/(1-p))  

logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk 

Above, p is the probability of presence of the characteristic of interest. It chooses parameters that maximize the likelihood of observing the sample values rather 

than that minimize the sum of squared errors (like in ordinary regression). 

Now, you may ask, why take a log? For the sake of simplicity, let’s just say that this is one of the best mathematical way to replicate a step function. I can go in 

more details, but that will beat the purpose of this article. 



 

 



 

Python Code 

#Import Library  

from sklearn.linear_model import LogisticRegression #Assumed you have, X (predictor) and Y (target) for train ing data 

set and x_test(predictor) of test_dataset  

# Create logistic regression object model = LogisticRegression()  

# Train the model using the training sets and check score model.fit(X, y) model.score(X, y)  

#Equation coefficient and Intercept print('Coefficient: \n', model.coef_) print('Intercept: \n', model.intercept_)  

#Predict Output  

predicted= model.predict(x_test)  

R Code 

x <- cbind(x_train,y_train)  

# Train the model using the training sets and check score logistic <- glm(y_train ~ ., data = x,family='binomial') 

summary(logistic) #Predict Output predicted= predict(logistic,x_test) 

  

Furthermore.. 



 

There are many different steps that could be tried in order to improve the model: 

including interaction terms removing features regularization techniques using a non-linear model 

  

3. Decision Tree 

This is one of my favorite algorithm and I use it quite frequently. It is a type  of  supervised  learning  algorithm  that  is  mostly  used 

for classification problems. Surprisingly, it works for both categorical and continuous dependent variables. In this algorithm, we split the population into two or 

more homogeneous sets. This is done based on most significant attributes/ independent variables to make as distinct groups as possible. For more details, you 

can read: Decision Tree Simplified. 

 

source: statsexchange 



 

In the image above, you can see that population is classified into four different groups based on multiple attributes to identify ‘if they will play or not’. To split the 

population into different heterogeneous groups, it uses various techniques like Gini, Information Gain, Chisquare, entropy. 

The best way to understand how decision tree works, is to play Jezzball – a classic game from Microsoft (image below). Essentially, you have a room with moving 

walls and you need to create walls such that maximum area gets cleared off with out the balls. 

 

So, every time you split the room with a wall, you are trying to create 2 different populations with in the same room. Decision trees work in very similar fashion 

by dividing a population in as different groups as possible. 

More: Simplified Version of Decision Tree Algorithms 

Python Code 

#Import Library  

#Import other necessary libraries like pandas, numpy... from sklearn import tree  

#Assumed you have, X (predictor) and Y (target) for train ing data set and x_test(predictor) of test_dataset  

# Create tree object   

model = tree.DecisionTreeClassifier(criterion='gini') # f or classification, here you can change the algorithm as g ini or 

entropy (information gain) by default it is gini   # model = tree.DecisionTreeRegressor() for regression  

# Train the model using the training sets and check score model.fit(X, y) model.score(X, y) #Predict Output predicted= 

model.predict(x_test)  



 

R Code 

library(rpart) x <- cbind(x_train,y_train) # grow tree   

fit <- rpart(y_train ~ ., data = x,method="class") summary(fit) #Predict Output  predicted= 

predict(fit,x_test) 

  

4. SVM (Support Vector Machine) 

It is a classification method. In this algorithm, we plot each data item as a point in n-dimensional space (where n is number of features you have) with the value 

of each feature being the value of a particular coordinate. 

For example, if we only had two features like Height and Hair length of an individual, we’d first plot these two variables in two dimensional space where each point 

has two co-ordinates (these co-ordinates are known as Support Vectors) 

 

Now, we will find some line that splits the data between the two differently classified groups of data. This will be the line such that the distances from the closest 

point in each of the two groups will be farthest away. 



 

 
In the example shown above, the line which splits the data into two differently classified groups is the black line, since the two closest points are the farthest apart 

from the line. This line is our classifier. Then, depending on where the testing data lands on either side of the line, that’s what class we can classify the new data 

as. 

More: Simplified Version of Support Vector Machine 

Think of this algorithm as playing JezzBall in n-dimensional space. The tweaks in the game are: 

You can draw lines / planes at any angles (rather than just horizontal or vertical as in classic game) 

The objective of the game is to segregate balls of different colors in different rooms. And the balls are not moving. 

  



 

Python Code 

#Import Library from sklearn import svm  

#Assumed you have, X (predictor) and Y (target) for train ing data set and x_test(predictor) of test_dataset  

# Create SVM classification object   

model = svm.svc() # there is various option associated wi th it, this is simple for classification. You can refer l ink, 

for mo# re detail.  

# Train the model using the training sets and check score model.fit(X, y) model.score(X, y) #Predict Output predicted= 

model.predict(x_test)  

R Code 

library(e1071) x <- cbind(x_train,y_train) # Fitting model fit <-svm(y_train ~ ., data = x) 

summary(fit) #Predict Output  predicted= predict(fit,x_test) 

  

5. Naive Bayes 

It is a classification technique based on Bayes’ theorem with an assumption of independence between predictors. In simple terms, a Naive Bayes classifier assumes 

that the presence of a particular feature in a class is unrelated to the presence of any other feature. For example, a fruit may be considered to be an apple if it is 

red, round, and about 3 inches in diameter. Even if these features depend on each other or upon the existence of the other features, a naive Bayes classifier would 

consider all of these properties to independently contribute to the probability that this fruit is an apple. 



 

Naive Bayesian model is easy to build and particularly useful for very large data sets. Along with simplicity, Naive Bayes is known to outperform even highly 

sophisticated classification methods. 

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and P(x|c). Look at the equation below:  

 

Here, 

  P(c|x) is the posterior probability of class (target) given predictor 

(a ribute).  

P(c) is the prior probability of class.  

P(x|c) is the likelihood which is the probability of predictor given class.  

  P(x) is the prior probability of predictor. 

Example: Let’s understand it using an example. Below I have a training data set of weather and corresponding target variable ‘Play’. Now, we need to classify 

whether players will play or not based on weather condition. Let’s follow the below steps to perform it. 

Step 1: Convert the data set to frequency table 

Step 2: Create Likelihood table by finding the probabilities like Overcast probability = 0.29 and probability of playing is 0.64. 



 

 

Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for each class. The class with the highest posterior probability is the outcome of 

prediction. 

Problem: Players will pay if weather is sunny, is this statement is correct? 

We can solve it using above discussed method, so P(Yes | Sunny) = P( Sunny | Yes) * P(Yes) / P (Sunny) 

Here we have P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P( 

Yes)= 9/14 = 0.64 

Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability. 

Naive Bayes uses a similar method to predict the probability of different class based on various attributes. This algorithm is mostly used in text classification and 

with problems having multiple classes. 

Python Code 

#Import Library  

from sklearn.naive_bayes import GaussianNB #Assumed you have, X (predictor) and Y (target) for train ing data set and 

x_test(predictor) of test_dataset # Create SVM classification object model = GaussianNB() #  there is other distribution 

for multinomial classes like 

 Bernoulli Naive Bayes, Refer link  



 

# Train the model using the training sets and check score model.fit(X, y) #Predict Output predicted= model.predict(x_test)  

R Code 

library(e1071) x <- cbind(x_train,y_train) # Fitting model fit <-naiveBayes(y_train ~ ., data = x)  

summary(fit) #Predict Output   

predicted= predict(fit,x_test) 

  

6. kNN (k- Nearest Neighbors) 

It can be used for both classification and regression problems. However, it is more widely used in classification problems in the industry. K nearest neighbors is a 

simple algorithm that stores all available cases and classifies new cases by a majority vote of its k neighbors. The case being assigned to the class is most common 

amongst its K nearest neighbors measured by a distance function. 

These distance functions can be Euclidean, Manhattan, Minkowski and Hamming distance. First three functions are used for continuous function and fourth one 

(Hamming) for categorical variables. If K = 1, then the case is simply assigned to the class of its nearest neighbor. At times, choosing K turns out to be a challenge 

while performing kNN modeling. 

More: Introduction to k-nearest neighbors : Simplified. 



 

 

KNN can easily be mapped to our real lives. If you want to learn about a person, of whom you have no information, you might like to find out about his close 

friends and the circles he moves in and gain access to his/her information! 

Things to consider before selecting kNN: 

KNN is computationally expensive 

Variables should be normalized else higher range variables can bias it 

Works on pre-processing stage more before going for kNN like outlier, noise removal 

Python Code 

#Import Library  

from sklearn.neighbors import KNeighborsClassifier #Assumed you have, X (predictor) and Y (target) for train ing data set 

and x_test(predictor) of test_dataset # Create KNeighbors classifier object model  KNeighborsClassifier(n_neighbors=6) # 

default value for n 

_neighbors is 5  

# Train the model using the training sets and check score model.fit(X, y) #Predict Output predicted= model.predict(x_test)  



 

R Code 

library(knn) x <- cbind(x_train,y_train) # Fitting model fit <-knn(y_train ~ ., data = x,k=5) 

summary(fit) #Predict Output  predicted= predict(fit,x_test) 

  

7. K-Means 

It is a type of unsupervised algorithm which  solves the clustering problem. Its procedure follows a simple and easy  way to classify a given data set through a 

certain number of  clusters (assume k clusters). Data points inside a cluster are homogeneous and heterogeneous to peer groups. 

Remember figuring out shapes from ink blots? k means is somewhat similar this activity. You look at the shape and spread to decipher how many different clusters 

/ population are present! 

 

How K-means forms cluster: 



 

1. K-means picks k number of points for each cluster known as centroids. 

2. Each data point forms a cluster with the closest centroids i.e. k clusters. 

3. Finds the centroid of each cluster based on existing cluster members. Here we have new centroids. 

4. As we have new centroids, repeat step 2 and 3. Find the closest distance for each data point from new centroids and get associated with new k-clusters. 

Repeat this process until convergence occurs i.e. centroids does not change. 

How to determine value of K: 

In K-means, we have clusters and each cluster has its own centroid. Sum of square of difference between centroid and the data points within a cluster constitutes 

within sum of square value for that cluster. Also, when the sum of square values for all the clusters are added, it becomes total within sum of square value for the 

cluster solution. 

We know that as the number of cluster increases, this value keeps on decreasing but if you plot the result you may see that the sum of squared distance decreases 

sharply up to some value of k, and then much more slowly after that. Here, we can find the optimum number of cluster. 

 

Python Code 

#Import Library from sklearn.cluster import KMeans #Assumed you have, X (attributes) for training 

data set a nd x_test(attributes) of test_dataset # Create KNeighbors classifier object model  



 

k_means = KMeans(n_clusters=3, random_state=0) # Train the model using the training sets and check 

score model.fit(X) #Predict Output predicted= model.predict(x_test)  

R Code 

library(cluster) fit <- kmeans(X, 3) # 5 cluster solution 

  

8. Random Forest 

Random Forest is a trademark term for an ensemble of decision trees. In Random Forest, we’ve collection of decision trees (so known as “Forest”). To classify a 

new object based on attributes, each tree gives a classification and we say the tree “votes” for that class. The forest chooses the classification having the most 

votes (over all the trees in the forest). 

Each tree is planted & grown as follows: 

1. If the number of cases in the training set is N, then sample of N cases is taken at random but with replacement. This sample will be the training set for 

growing the tree. 

2. If there are M input variables, a number m<<M is specified such that at each node, m variables are selected at random out of the M and the best split on 

these m is used to split the node. The value of m is held constant during the forest growing. 

3. Each tree is grown to the largest extent possible. There is no pruning. 

For more details on this algorithm, comparing with decision tree and tuning model parameters, I would suggest you to read these articles: 

1. Introduction to Random forest – Simplified 

2. Comparing a CART model to Random Forest (Part 1) 

3. Comparing a Random Forest to a CART model (Part 2) 



 

4. Tuning the parameters of your Random Forest model 

Python 

#Import Library  

from sklearn.ensemble import RandomForestClassifier #Assumed you have, X (predictor) and Y (target) for train ing data 

set and x_test(predictor) of test_dataset  

# Create Random Forest object model= RandomForestClassifier()  

# Train the model using the training sets and check score model.fit(X, y) #Predict Output predicted= model.predict(x_test)  

R Code 

library(randomForest) x <- cbind(x_train,y_train)  

# Fitting model  

fit <- randomForest(Species ~ ., x,ntree=500) summary(fit) #Predict Output   

predicted= predict(fit,x_test) 

  

9. Dimensionality Reduction Algorithms 

In the last 4-5 years, there has been an exponential increase in data capturing  at  every  possible  stages.  Corporates/  Government 

Agencies/ Research organisations are not only coming with new sources but also they are capturing data in great detail. 



 

For example: E-commerce companies are capturing more details about customer like their demographics, web crawling history, what they like or dislike, purchase 

history, feedback and many others to give them personalized attention more than your nearest grocery shopkeeper. 

As a data scientist, the data we are offered also consist of many features, this sounds good for building good robust model but there is a challenge. How’d you 

identify highly significant variable(s) out 1000 or 2000? In such cases, dimensionality reduction algorithm helps us along with various other algorithms like Decision 

Tree, Random Forest, PCA, Factor Analysis, Identify based on correlation matrix, missing value ratio and others. 

To know more about this algorithms, you can read “Beginners Guide To Learn Dimension Reduction Techniques“. 

Python  Code 

#Import Library  

from sklearn import decomposition  

#Assumed you have training and test data set as train and  test  

# Create PCA obeject pca= decomposition.PCA(n_components= 

k) #default value of k =min(n_sample, n_features)  

# For Factor analysis  

#fa= decomposition.FactorAnalysis()  

# Reduced the dimension of training dataset using PCA train_reduced = pca.fit_transform(train) #Reduced the 

dimension of test dataset  

test_reduced = pca.transform(test) #For more detail on this, please refer  this link. 



 

R Code 

library(stats) pca <- princomp(train, cor = TRUE) train_reduced  <- predict(pca,train) test_reduced  

<- predict(pca,test) 

  

10. Gradient Boosting Algorithms 

10.1. GBM 

GBM is a boosting algorithm used when we deal with plenty of data to make a prediction with high prediction power. Boosting is actually an ensemble of learning 

algorithms which combines the prediction of several base estimators in order to improve robustness over a single estimator. It combines multiple weak or average 

predictors to a build strong predictor. These boosting algorithms always work well in data science competitions like Kaggle, AV Hackathon, CrowdAnalytix. 

More: Know about Boosting algorithms in detail 

Python Code 

#Import Library  

from sklearn.ensemble import GradientBoostingClassifier #Assumed you have, X (predictor) and Y (target) for train ing data 

set and x_test(predictor) of test_dataset # Create Gradient Boosting Classifier object model= 

GradientBoostingClassifier(n_estimators=100, learn ing_rate=1.0, max_depth=1, random_state=0) # Train the model using the 

training sets and check score model.fit(X, y) #Predict Output predicted= model.predict(x_test)  



 

R Code 

library(caret) x <- cbind(x_train,y_train) # Fitting model  

fitControl <- trainControl( method = "repeatedcv", number 

 = 4, repeats = 4)  

fit <- train(y ~ ., data = x, method = "gbm", trControl =  fitControl,verbose = FALSE) predicted= predict(fit,x_test,type= 

"prob")[,2]  

GradientBoostingClassifier and Random Forest are two different boosting tree classifier and often people ask about the difference between these two 

algorithms. 

10.2. XGBoost 

Another classic gradient boosting algorithm that’s known to be the decisive choice between winning and losing in some Kaggle competitions. 

The XGBoost has an immensely high predictive power which makes it the best choice for accuracy in events as it possesses both linear model and the tree 

learning algorithm, making the algorithm almost 10x faster than existing gradient booster techniques. 

The support includes various objective functions, including regression, classification and ranking. 

One of the most interesting things about the XGBoost is that it is also called a regularized boosting technique. This helps to reduce overfit modelling and has a 

massive support for a range of languages such as Scala, Java, R, Python, Julia and C++. 

Supports distributed and widespread training on many machines that encompass GCE, AWS, Azure and Yarn clusters. XGBoost can also be integrated with Spark, 

Flink and other cloud dataflow systems with a built in cross validation at each iteration of the boosting process. 

To learn more about XGBoost and parameter tuning, visit https://www.analyticsvidhya.com/blog/2016/03/complete-guideparameter-tuning-xgboost-with-

codes-python/. 



 

Python Code: 

from xgboost import XGBClassifier  

from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X = 

dataset[:,0:10] Y = dataset[:,10:] seed = 1  

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed)  

model = XGBClassifier()  

model.fit(X_train, y_train)  

#Make predictions for test data y_pred = model.predict(X_test)  

R Code: 

require(caret)  

x <- cbind(x_train,y_train) # Fitting model TrainControl <- trainControl( method = "repeatedcv", numb er = 

10, repeats = 4)  



 

model<- train(y ~ ., data = x, method = "xgbLinear", trCo ntrol = TrainControl,verbose = FALSE) OR   

model<- train(y ~ ., data = x, method = "xgbTree", trCont rol = TrainControl,verbose = FALSE)  

predicted <- predict(model, x_test) 

  

10.3. LightGBM 

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages: 

Faster training speed and higher efficiency 

Lower memory usage 

Better accuracy 

Parallel and GPU learning supported 

Capable of handling large-scale data 

The framework is a fast and high-performance gradient boosting one based on decision tree algorithms, used for ranking, classification and many other machine 

learning tasks. It was developed under the Distributed Machine Learning Toolkit Project of Microsoft. 

Since the LightGBM is based on decision tree algorithms, it splits the tree leaf wise with the best fit whereas other boosting algorithms split the tree depth wise 

or level wise rather than leaf-wise. So when growing on the same leaf in Light GBM, the leaf-wise algorithm can reduce more loss than the level-wise algorithm 

and hence results in much better accuracy which can rarely be achieved by any of the existing boosting algorithms. 

Also, it is surprisingly very fast, hence the word ‘Light’. 

Refer to the article to know more about LightGBM: 

https://www.analyticsvidhya.com/blog/2017/06/which-algorithmtakes-the-crown-light-gbm-vs-xgboost/ 



 

Python Code: 

data = np.random.rand(500, 10) # 500 entities, each conta ins 10 features  

label = np.random.randint(2, size=500) # binary target  

train_data = lgb.Dataset(data, label=label) test_data = train_data.create_valid('test.svm')  

param = {'num_leaves':31, 'num_trees':100, 'objective':'b 
inary'}  

param['metric'] = 'auc'  

num_round = 10  

bst = lgb.train(param, train_data, num_round, valid_sets= 

[test_data])  

bst.save_model('model.txt')  

# 7 entities, each contains 10 features data = np.random.rand(7, 10) ypred = bst.predict(data)  

R Code: 



 

library(RLightGBM) data(example.binary)  

#Parameters  

num_iterations <- 100  

config <- list(objective = "binary",  metric="binary_logl oss,auc", learning_rate = 0.1, num_leaves = 63, tree_lear ner = "serial", feature_fraction = 0.8, bagging_freq = 5, bagging_fraction = 

0.8, min_data_in_leaf = 50, min_sum_he 



 

ssian_in_leaf = 5.0)  

#Create data handle and booster handle.data <- lgbm.data.create(x)  

lgbm.data.setField(handle.data, "label", y)  

handle.booster <- lgbm.booster.create(handle.data, lapply (config, as.character))  

#Train for num_iterations iterations and eval every 5 ste ps  

lgbm.booster.train(handle.booster, num_iterations, 5)  

#Predict  

pred <- lgbm.booster.predict(handle.booster, x.test)  

#Test accuracy  

sum(y.test == (y.pred > 0.5)) / length(y.test)  

#Save model (can be loaded again via lgbm.booster.load(fi lename)) lgbm.booster.save(handle.booster, filename = 

"/tmp/model. 

txt") 



 

If you’re familiar with the Caret package in R, this is another way of implementing the LightGBM. 

require(caret) require(RLightGBM) data(iris)  

model <-caretModel.LGBM()  

fit <- train(Species ~ ., data = iris, method=model, verb osity = 0) print(fit)  

y.pred <- predict(fit, iris[,1:4])  

library(Matrix)  

model.sparse <- caretModel.LGBM.sparse()  

#Generate a sparse matrix  

mat <- Matrix(as.matrix(iris[,1:4]), sparse = T) fit <- train(data.frame(idx = 1:nrow(iris)), iris$Specie s, method = 

model.sparse, matrix = mat, verbosity = 0) print(fit)  

10.4. Catboost 

CatBoost is a recently open-sourced machine learning algorithm from Yandex. It can easily integrate with deep learning frameworks like Google’s TensorFlow 

and Apple’s Core ML. 



 

The best part about CatBoost is that it does not require extensive data training like other ML models, and can work on a variety of data formats; not 

undermining how robust it can be. 

Make sure you handle missing data well before you proceed with the implementation. 

Catboost can automatically deal with categorical variables without showing the type conversion error, which helps you to focus on tuning your model better 

rather than sorting out trivial errors. 

Learn more about Catboost from this article: 

https://www.analyticsvidhya.com/blog/2017/08/catboost-automatedcategorical-data/ Python Code: 

import pandas as pd import numpy as np  

from catboost import CatBoostRegressor  

#Read training and testing files train = pd.read_csv("train.csv") test = pd.read_csv("test.csv")  

 



 

#Imputing missing values for both train and test train.fillna(-999, inplace=True) test.fillna(-999,inplace=True)  

#Creating a training set for modeling and validation set to check model performance  

X = train.drop(['Item_Outlet_Sales'], axis=1) y = train.Item_Outlet_Sales  

from sklearn.model_selection import train_test_split  

X_train, X_validation, y_train, y_validation = train_test 

_split(X, y, train_size=0.7, random_state=1234) categorical_features_indices = np.where(X.dtypes != np.fl oat)[0]  

#importing library and building model  

from catboost import CatBoostRegressormodel=CatBoostRegre ssor(iterations=50, depth=3, learning_rate=0.1, loss_func 

tion='RMSE')  

model.fit(X_train, y_train,cat_features=categorical_featu res_indices,eval_set=(X_validation, y_validation),plot=Tr ue)  



 

submission = pd.DataFrame()  

submission['Item_Identifier'] = test['Item_Identifier'] submission['Outlet_Identifier'] = test['Outlet_Identifie r']  

submission['Item_Outlet_Sales'] = model.predict(test) 

R Code: 

set.seed(1)  

require(titanic)  

require(caret)  

require(catboost)  

tt <- titanic::titanic_train[complete.cases(titanic::tita nic_train),]  

data <- as.data.frame(as.matrix(tt), stringsAsFactors = T RUE)  

drop_columns = c("PassengerId", "Survived", "Name", "Tick et", "Cabin")  

x <- data[,!(names(data) %in% drop_columns)]y <- data[,c 

("Survived")]  

fit_control <- trainControl(method = "cv", number = 4,cla ssProbs = TRUE)  



 

grid <- expand.grid(depth = c(4, 6, 8),learning_rate = 0. 1,iterations = 100, l2_leaf_reg = 1e-3,            rsm =  

0.95, border_count = 64)  

report <- train(x, as.factor(make.names(y)),method = catb oost.caret,verbose = TRUE, preProc = NULL,tuneGrid = gri d, 

trControl = fit_control)  

print(report)  

importance <- varImp(report, scale = FALSE)  

print(importance) 

 


